Binocular deprivation of pattern vision (BD) early in life permanently impairs global motion perception. With the SMI-32 antibody against neurofilament protein (NFP) as a marker of the motion-sensitive Y-cell pathway (Van der Gucht et al. [2001] Cereb. Cortex 17:2805-2819), we analyzed the impact of early BD on the retinal circuitry in adult, perceptually characterized cats (Burnat et al. [2005] Neuroreport 16:751-754). In controls, large retinal ganglion cells exhibited a strong NFP signal in the soma and in the proximal parts of the dendritic arbors. The NFP-immunoreactive dendrites typically branched into sublamina a of the inner plexiform layer (IPL), i.e., the OFF inner plexiform sublamina. In the retina of adult BD cats, however, most of the NFP-immunoreactive ganglion cell dendrites branched throughout the entire IPL. The NFP-immunoreactive cell bodies were less regularly distributed, often appeared in pairs, and had a significantly larger diameter compared with NFP-expressing cells in control retinas. These remarkable differences in the immunoreactivity pattern were typically observed in temporal retina. In conclusion, we show that the anatomical organization typical of premature Y-type retinal ganglion cells persists into adulthood even if normal visual experience follows for years upon an initial 6-month period of BD. Binocular pattern deprivation possibly induces a lifelong OFF functional domination, normally apparent only during development, putting early high-quality vision forward as a premise for proper ON-OFF pathway segregation. These new observations for pattern-deprived animals provide an anatomical basis for the well-described motion perception deficits in congenital cataract patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.23045DOI Listing

Publication Analysis

Top Keywords

retinal ganglion
12
ganglion cell
8
motion perception
8
ganglion cells
8
inner plexiform
8
lack early
4
pattern
4
early pattern
4
pattern stimulation
4
stimulation prevents
4

Similar Publications

Exploring the impact of nano platinum-hydrogen saline on oxygen-induced retinopathy in neonatal rats.

J Matern Fetal Neonatal Med

December 2025

Department of Pediatrics, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan No.1 Hospital, Wuhan, China.

Objective: The objective of this study is to assess the impact of nano platinum-hydrogen saline (Pt NPs + H) on oxygen-induced retinopathy (OIR) in neonatal rats, with the goal to contribute new insights into the therapeutic strategies for retinopathy of prematurity.

Methods: Pt NPs + H formulation was synthesized to address OIR in a rat model. Subsequent examination included the assessment of retinal blood vessel distribution and morphology through hematoxylin and eosin (HE) and isolectin B4 (IB4) staining techniques.

View Article and Find Full Text PDF

Effect of siponimod on retinal thickness, a marker of neurodegeneration, in participants with SPMS: Findings from the EXPAND OCT substudy.

Mult Scler Relat Disord

January 2025

Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland.

Background: People with MS show abnormal thinning of the retinal layers, which is associated with clinical disability and brain atrophy, and is a potential surrogate marker of neurodegeneration and treatment effects.

Objective: To evaluate the utility of retinal thickness as a surrogate marker of neurodegeneration and treatment effect in participants with secondary progressive MS (SPMS) from the optical coherence tomography (OCT) substudy of the EXPAND Phase 3 clinical trial (siponimod versus placebo).

Methods: In the OCT substudy population (n = 159), treatment effects on change in the average thickness of the retinal layer, peripapillary retinal nerve fiber layer (pRNFL), and combined macular ganglion cell and inner plexiform layers (GCIPL) were analyzed by high-definition spectral domain OCT at months 3, 12, and 24.

View Article and Find Full Text PDF

Screening of Retinal-targeting Adeno-Associated Virus (AAV) via DNA shuffling.

Exp Eye Res

January 2025

Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215000, China; Key Laboratory of Geriatric Diseases and Immunology, Ministry of Education, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China. Electronic address:

Due to its unique physiological structure and functions, the eye has received considerable attention in the field of Adeno-associated virus (AAV) gene therapy. Inherited retinal degenerative diseases, which arise from pathogenic mutations in mRNA transcripts expressed in the eye's photoreceptor cells or retinal pigment epithelium (RPE), are the most common cause of vision loss. However, current retinal gene therapy mostly involves subretinal injection of therapeutic genes, which treats a limited area, entails retinal detachment, and requires sophisticated techniques.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop a deep learning approach that restores artifact-laden optical coherence tomography (OCT) scans and predicts functional loss on the 24-2 Humphrey Visual Field (HVF) test.

Methods: This cross-sectional, retrospective study used 1674 visual field (VF)-OCT pairs from 951 eyes for training and 429 pairs from 345 eyes for testing. Peripapillary retinal nerve fiber layer (RNFL) thickness map artifacts were corrected using a generative diffusion model.

View Article and Find Full Text PDF

Longitudinal Changes of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Highly Myopic Glaucoma: A 3-year Cohort Study.

Ophthalmology

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510623, China. Electronic address:

Purpose: To describe the longitudinal changes in peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell-inner plexiform layer (mGC-IPL) thicknesses in highly myopic eyes with and without glaucoma, and to investigate the effects of high myopia (HM) on the sectoral patterns of pRNFL and mGC-IPL thinning.

Design: Longitudinal cohort study.

Participants: A total of 243 eyes from 243 individuals with 3-year follow-up were included in this study: 109 eyes in the HM group, 64 eyes in the open-angle glaucoma (OAG) group and 70 eyes in the highly myopic glaucoma (HMG) group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!