The barrier epithelia of multicellular organisms frequently come into direct contact with microorganisms and thus need to fulfill the important task of preventing the penetration of pathogens that could cause systemic infections. A functional immune defence in the epithelial linings of the digestive, respiratory and reproductive organs as well as the epidermis/skin of animals is therefore of crucial importance for survival. Epithelial defence reactions are likely to be evolutionarily ancient, and the use of invertebrate animal models, such as insects and nematodes, has been crucial in unravelling the mechanisms underlying epithelial immunity. This review addresses basic questions of epithelial immunity in animals and humans. It focuses on recent developments in the understanding of the immune responses in the fruit fly Drosophila melanogaster and how the innate immune system acts locally in the epidermis and cuticle, tracheae, gut and genital organs. Both basal immune activities in epithelia that are constantly exposed to microbes as well as positive and negative regulation in response to pathogenic organisms are covered. Important immuno-physiological aspects of epithelial defence mechanisms are also discussed, such as wound healing, re-epithelialization and intestinal homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6741545 | PMC |
http://dx.doi.org/10.1159/000332947 | DOI Listing |
Sci Rep
December 2024
Rheonova, 1 Allee de Certéze, 38610, Gières, France.
Pulmonary mucus serves as a crucial protective barrier in the respiratory tract, defending against pathogens and contributing to effective clearance mechanisms. In Muco Obstructive Pulmonary Diseases (MOPD), abnormal rheological properties lead to highly viscous mucus, fostering chronic infections and exacerbations. While prior research has linked mucus viscoelasticity to its mucin content, the variability in MOPD patients implies the involvement of other factors.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:
Background: Environmental pollutants have been found to contribute to the development and acute exacerbation of asthma. Microplastics (MPs) have received widespread attention as an emerging global pollutant. Airborne MPs can cause various adverse health effects.
View Article and Find Full Text PDFBiomater Sci
December 2024
National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
Oral protein drugs' delivery faces challenges due to multiple absorption barriers for macromolecules. Co-administration with permeation enhancers and encapsulation in nano-carriers are two promising strategies to enhance their oral absorption. Herein, the poly(lactic--glycolic acid) nanoparticles (PLGA NPs) are decorated with polyethylene glycol (PEG) and a traditional Chinese medicine-derived permeation enhancer borneol (BO) for oral insulin delivery.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria.
Introduction: Airway epithelial cells play a central role in the innate immune response to invading bacteria, yet adequate human infection models are lacking.
Methods: We utilized mucociliary-differentiated human airway organoids with direct access to the apical side of epithelial cells to model the initial phase of respiratory tract infection.
Results: Immunofluorescence of infected organoids revealed that invades the epithelial barrier and subsequently proliferates within the epithelial space.
Inflammatory bowel disease (IBD) patients exhibit compromised intestinal barrier function and decreased mucus accumulation, as well as increased inflammation, fibrosis, and cancer risk, with symptoms often being exacerbated in women during pregnancy. Here, we show that these IBD hallmarks can be replicated using human Organ Chips lined by IBD patient-derived colon epithelial cells interfaced with matched fibroblasts cultured under flow. Use of heterotypic tissue recombinants revealed that IBD fibroblasts are the primary drivers of multiple IBD symptoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!