This study highlights the potential of oleaginous fungus, Mucor circinelloides in adsorbing/assimilating oil and nutrients in thin stillage (TS), and producing lipid and protein-rich fungal biomass. Fungal cultivation on TS for 2 days in a 6-L airlift bioreactor, resulted in a 92% increase in oil yield from TS, and 20 g/L of fungal biomass (dry) with a lipid content of 46% (g of oil per 100g dry biomass). Reduction in suspended solids and soluble chemical oxygen demand (SCOD) in TS were 95% and 89%, respectively. The polyunsaturated fatty acids in fungal oil were 52% of total lipids. Fungal cells grown on Yeast Malt (YM) broth had a higher concentration of γ-linolenic acid (17 wt.%) than those grown on TS (1.4 wt.%). Supplementing TS with crude glycerol (10%, v/v) during the stationary growth phase led to a further 32% increase (from 46% to 61%) in cellular oil content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2011.12.031 | DOI Listing |
Appl Environ Microbiol
December 2024
Department of Life Sciences, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden.
Unlabelled: Bioprospecting can uncover new yeast strains and species with interesting ecological characteristics and valuable biotechnological traits, such as the capacity to convert different carbon sources from industrial side and waste streams into bioproducts. In this study, we conducted untargeted yeast bioprospecting in tropical West Africa, collecting 1,996 isolates and determining their growth in 70 different environments. While the collection contains numerous isolates with the potential to assimilate several cost-effective and sustainable carbon and nitrogen sources, we focused on characterizing the 203 strains capable of growing on lactose, the main carbon source in the abundant side stream cheese whey from dairy industries.
View Article and Find Full Text PDFFront Fungal Biol
December 2024
Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.
Research on enhancing the production of lipids, particularly polyunsaturated fatty acids that are considered important for health, has focused on improvement of metabolism as well as heterologous expression of biosynthetic genes in the oleaginous fungus . To date, the productivity and production yield of free fatty acids have been enhanced by 10-fold to 90-fold via improvements in metabolism and optimization of culture conditions. Moreover, the productivity of ester-type fatty acids present in triacylglycerols could be enhanced via metabolic improvement.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
December 2024
Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China. Electronic address:
SREBP1 is a transcription factor that influences lipogenesis by regulating key genes associated with lipid biosynthesis, while AMPK, modulates lipid metabolism by regulating acetyl-CoA carboxylase. The exact role of these metabolic regulators in oleaginous microbes remains unclear. This study identified and manipulated the genes encoding SREBP1 (sre1) and α1 subunit of AMPK (ampk-α1) in Mucor circinelloides WJ11.
View Article and Find Full Text PDFBraz J Microbiol
December 2024
Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
Macaw palm (Acrocomia aculeata) is an oleaginous crop native to Brazil with significant economic and environmental value. It has been explored commercially in Brazil within sustainable management. The microbiota associated with macaw palm is still little known and there is no report about their root's fungal endophytes.
View Article and Find Full Text PDFFront Microbiol
November 2024
Laboratory of Algal Research, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India.
Microalgae are vital for their photosynthetic abilities, contributing significantly to global oxygen production, serving as a key trophic level in aquatic ecosystems, aiding in biofuel production, assisting in wastewater treatment, and facilitating the synthesis of valuable biochemicals. Despite these advantages, photosynthetic microalgae are sensitive to salt stress, which alters their physiochemical and metabolic status, ultimately reducing microalgal growth. This sensitivity highlights the importance of understanding the impact of elevated salt content on the physiochemical, metabolic, and transcriptomic profiling of sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!