Extracorporeal blood pumps are used as temporary ventricular assist devices or for extracorporeal membrane oxygenation. The ideal pump would be intrinsically self-regulating, carry no risk of cavitation or excessive inlet suction, be afterload insensitive, and valveless thus reducing thrombogenicity. Currently used technology, including roller, centrifugal, and pneumatic pulsatile pumps, does not meet these requirements. We studied a nonocclusive peristaltic pump (M-Pump) in two mock circulatory loops and compared the performance to a frequently used centrifugal pump and a modified prototype of the M-Pump (the BioVAD). The simple resistance loop consisted of the investigated pump, a fixed height reservoir at 150 mm Hg, and a variable inflow reservoir. The pulsatile circulation used a mock patient simulator with adjustable resistance elements connected to a pneumatic pulsatile pump. The M-Pump intrinsically regulated flow with changing preload, was afterload insensitive, and did not cavitate, unlike the centrifugal pump. The BioVAD also demonstrated these features and could augment output with the use of vacuum assistance. A nonocclusive peristaltic pump may be superior for short-term extracorporeal circulatory assist by mitigating risks of excessive inlet suction, afterload sensitivity, and thrombosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296523 | PMC |
http://dx.doi.org/10.1097/MAT.0b013e318245d356 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!