A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of tunable silica-mineralized nanotubes using flagella as bio-templates. | LitMetric

Fabrication of tunable silica-mineralized nanotubes using flagella as bio-templates.

Nanotechnology

Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.

Published: February 2012

Bacterial flagella are particularly attractive bio-templates for nanotubes due to their tubular structures and small inner and outer diameters. In this work, flagella isolated from Salmonella typhimurium were used as templates for silica-mineralized nanotubes. The process involved pretreatment of flagella with aminopropyltriethoxysilane (APTES), followed by the addition of tetraethoxysilane (TEOS). By controlling the concentration of TEOS and the reaction time, we developed a simple and precise method for creating silica-mineralized flagella nanotubes (SMFNs) with various thicknesses of the silica layer. It is demonstrated that flagella can be utilized for the fabrication of SMFNs with tunable thickness. A thicker silica layer was obtained as the concentration ratio of TEOS and reaction time was increased. The present experimental evidence has shown the feasibility of using such fabrication techniques to manufacture nanotubes without genetic modification of flagella which retain the original morphology.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/23/5/055601DOI Listing

Publication Analysis

Top Keywords

silica-mineralized nanotubes
8
teos reaction
8
reaction time
8
silica layer
8
flagella
7
nanotubes
5
fabrication tunable
4
tunable silica-mineralized
4
nanotubes flagella
4
flagella bio-templates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!