A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Expanding the multipotent profile of huprine-tacrine heterodimers as disease-modifying anti-Alzheimer agents. | LitMetric

Expanding the multipotent profile of huprine-tacrine heterodimers as disease-modifying anti-Alzheimer agents.

Neurodegener Dis

Laboratori de Química Farmacèutica, Unitat Associada al CSIC, Facultat de Farmàcia, and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain.

Published: August 2012

Background: Multifactorial diseases such as Alzheimer's disease (AD) should be more efficiently tackled by drugs which hit multiple biological targets involved in their pathogenesis. We have recently developed a new family of huprine-tacrine heterodimers, rationally designed to hit multiple targets involved upstream and downstream in the neurotoxic cascade of AD, namely β-amyloid aggregation and formation as well as acetylcholinesterase catalytic activity.

Objective: In this study, the aim was to expand the pharmacological profiling of huprine-tacrine heterodimers investigating their effect on muscarinic M(1) receptors as well as their neuroprotective effects against an oxidative insult.

Methods: Sprague-Dawley rat hippocampus homogenates were used to assess the specific binding of two selected compounds in competition with 1 nM [(3)H]pirenzepine (for M(1) receptors) or 0.8 nM [(3)H]quinuclidinyl benzilate (for M(2) receptors). For neuroprotection studies, SHSY5Y cell cultures were subjected to 250 μM hydrogen peroxide insult with or without preincubation with some huprine-tacrine heterodimers.

Results: A low nanomolar affinity and M(1)/M(2) selectivity has been found for the selected compounds. Huprine-tacrine heterodimers are not neurotoxic to SHSY5Y cells at a range of concentrations from 1 to 0.001 μM, and some of them can protect cells from the oxidative damage produced by hydrogen peroxide at concentrations as low as 0.001 μM.

Conclusion: Even though it remains to be determined if these compounds act as agonists at M(1) receptors, as it is the case of the parent huprine Y, their low nanomolar M(1) affinity and neuroprotective effects expand their multitarget profile and increase their interest as disease-modifying anti-Alzheimer agents.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000333225DOI Listing

Publication Analysis

Top Keywords

huprine-tacrine heterodimers
16
disease-modifying anti-alzheimer
8
anti-alzheimer agents
8
hit multiple
8
targets involved
8
neuroprotective effects
8
selected compounds
8
hydrogen peroxide
8
low nanomolar
8
nanomolar affinity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!