In skin, the regeneration of the ontogenically distinct mesenchymal and epithelial compartments must proceed in a coordinated manner orchestrated by extracellular signaling networks. We have recently found that the switch from regeneration to remodeling during repair is modulated by chemokines that bind CXCR3 receptor. If this signaling is disrupted wounds continue to be active, resulting in a chronic hypercellular and hypertrophic state characterized by an immature matrix composition. As healing is masterminded in large part by fibroblasts and their synthesis of the extracellular matrix, the question arose as to whether this ongoing scarring can be modulated by transplanted fibroblasts. We examined wounds in the CXCR3-/- mouse scarring model. These wounds exhibited a significant delay in healing in all areas compared to young and aged wild-type mice. Full-thickness wounds were transplanted with fibroblasts derived from newborn CXCR3-/- or wild-type mice. The transplanted fibroblasts were labeled with fluorescent dye (CM-DiI) and suspended in hyaluronic acid gel; by 30 days, these transplanted cells comprised some 30% of the dermal stromal cells regardless of the host or source of transplanted cells. Wild-type fibroblasts transplanted into CXCR3-/- mice wounds reversed the delay and dysfunction previously seen in CXCR3-/- wounds; this correction was not noted with transplanted CXCR3-/- fibroblasts. Additionally, transplant of CXCR3-/- cells into wounds in wild-type animals did not adversely affect those wounds. The transplanted fibroblasts exhibited strong survival and migration patterns and led to an increase in tensile strength. Expression of matrix proteins and collagen in CXCR3-/- wounds transplanted with wild-type fibroblasts resembled normal wild-type healing, and the wound matrix in wild-type mice transplanted with CXCR3-/- cells also presented a mature matrix. These suggest that the major determinant of healing versus scarring lies with the nature of the matrix. These findings have intriguing implications for rational cellular interventions aimed at promoting wound healing via cell therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572606 | PMC |
http://dx.doi.org/10.3727/096368911X623817 | DOI Listing |
J Allergy Clin Immunol
December 2024
Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. Electronic address:
Background: Heterozygous immunoproteasome subunit beta-type 10 (PSMB10) mutations can cause severe combined immunodeficiency (SCID) and Omenn syndrome (OS). Hematopoietic stem cell transplantation in these patients is associated with severe complications and poor immune reconstitution, often resulting in death.
Objective: To perform immunological and molecular characterization of an infant with a PSMB10 heterozygous variant.
Cancer Lett
December 2024
Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P. R. China. Electronic address:
Hepatocellular carcinoma (HCC) is a lethal malignancy characterized by rapid growth. The interaction between tumor cells and cancer-associated fibroblasts (CAFs) significantly influences HCC progression. CCL15, a CC chemokine family member, is predominantly expressed in HCC and strongly correlates with tumor size, indicating its critical role in HCC growth.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
Fibroblast-mediated oxidative stress is a pivotal factor in the pathogenesis of skin photoaging, predominantly induced by UVA radiation. Diverging from traditional strategies that concentrate on the reduction of reactive oxygen species (ROS), the present study implements mitochondrial transplantation as an innovative therapeutic approach. The objective of this study is to reestablish the oxidative microenvironment and to effectively rejuvenate cellular functionality through the direct introduction of healthy and vibrant mitochondria.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
Aortic aneurysm is a life-threatening disease caused by progressive dilation of the aorta and weakened aortic walls. Its pathogenesis involves an imbalance between connective tissue repair and degradation. CD34 cells comprise a heterogeneous population that exhibits stem cell and progenitor cell properties.
View Article and Find Full Text PDFNPJ Regen Med
December 2024
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.
As an emerging type of pluripotent stem cells, chemically induced pluripotent stem cells (CiPSCs) avoid the risks of genomic disintegration by exogenous DNAs from viruses or plasmids, providing a safer stem cell source. To verify CiPSCs' capacity to differentiate into retinal organoids (ROs), we induced CiPSCs from mouse embryonic fibroblasts by defined small-molecule compounds and successfully differentiated the CiPSCs into three-dimensional ROs, in which all major retinal cell types and retinal genes were in concordance with those in vivo. We transplanted retinal photoreceptors from ROs into the subretinal space of retinal degeneration mouse models and the cells could integrate into the host retina, establish synaptic connections, and significantly improve the visual functions of the murine models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!