Several network properties have been identified as determinants of the stability and complexity of mutualistic networks. However, it is unclear which mechanisms give rise to these network properties. Phenology seems important, because it shapes the topology of mutualistic networks, but its effects on the dynamics of mutualistic networks have scarcely been studied. Here, we study these effects with a general dynamical model of mutualistic and competitive interactions where the interaction strength depends on the temporal overlap between species resulting from their phenologies. We find a negative complexity-stability relationship, where phenologies maximising mutualistic interactions and minimising intraguild competitive interactions generate speciose, nested and poorly connected networks with moderate asymmetry and low resilience. Moreover, lengthening the season increases diversity and resilience. This highlights the fragility of real mutualistic communities with short seasons (e.g. Arctic environments) to drastic environmental changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1461-0248.2011.01726.x | DOI Listing |
Microorganisms
November 2024
Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China.
Nitrogen (N) deposition from human activities leads to an imbalance in the N and phosphorus (P) ratios of natural ecosystems, which has a series of negative impacts on ecosystems. In this study, we used 16s rRNA sequencing technology to investigate the effect of the N-P supply ratio on the bulk soil (BS) and rhizosphere soil (RS) bacterial community of halophytes in coastal wetlands through manipulated field experiments. The response of soil bacterial communities to changing N and P ratios was influenced by plants.
View Article and Find Full Text PDFInsects
December 2024
Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 44600, Jalisco, Mexico.
Background: Bees rely on plants for nutrition and reproduction, making the preservation of natural areas crucial as pollinator reservoirs. Seasonal tropical dry forests are among the richest habitats for bees, but only 27% of their original extent remains in Mexico. In contrast, temperate forests harbor fewer bee species and face high deforestation rates, with 40% of their area converted to other land uses.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
Background: Nutrient limitation is a universal phenomenon in terrestrial ecosystems. Root and mycorrhizal are critical to plant nutrient absorption in nutrient-limited ecosystems. However, how they are modified by N and P limitations with advancing vegetation successions in karst forests remains poorly understood.
View Article and Find Full Text PDFPlant Mol Biol
December 2024
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain.
Global climate change exacerbates abiotic stresses, as drought, heat, and salt stresses are anticipated to increase significantly in the coming years. Plants coexist with a diverse range of microorganisms. Multiple inter-organismic relationships are known to confer benefits to plants, including growth promotion and enhanced tolerance to abiotic stresses.
View Article and Find Full Text PDFAlp Bot
April 2024
Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland.
Unlabelled: Due to global warming, the worldwide retreat of glaciers is causing changes in species diversity, community composition, and species interactions. However, the impact of glacier retreat on interaction diversity and ecological networks remains poorly understood. An integrative understanding of network dynamics may inform conservation actions that support biodiversity and ecosystem functioning after glacier extinction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!