Sex-dependent differences in rat hepatic lipid accumulation and insulin sensitivity in response to diet-induced obesity.

Biochem Cell Biol

Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Cra. Valldemossa km 7.5. E-07122 Palma de Mallorca, Spain.

Published: April 2012

Ectopic deposition of lipids in liver and other extrahepatic tissues alters their function and occurs once adipose tissue fat storage capacity is exceeded. We investigated sexual dimorphism in the effects of dietary obesity on the liver insulin signaling pathway, as well as its connection to differences in hepatic fat accumulation. Ten-week-old Wistar rats of both sexes were fed a standard diet or a high-fat diet for 26 weeks. Insulin, adipokine levels, and glucose tolerance were measured. Lipid content, PPARα mRNA expression and protein levels of insulin receptor subunit β (IRβ), IR substrate 2 (IRS-2), Ser/Thr kinase A (Akt), and pyruvate dehydrogenase kinase isozyme 4 (PDK4) were measured in liver. In control rats, serum parameters and hepatic levels of IRβ, IRS-2, and Akt proteins pointed to a profile of better insulin sensitivity in females. In response to dietary treatment, female rats exhibited a greater increase in body mass and adiposity and lower liver fat accumulation than males, but maintained better glucose tolerance. The reduced insulin signaling capacity in the liver of obese female rats seems to prevent lipid accumulation and probably lipotoxicity-associated hepatic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1139/o11-069DOI Listing

Publication Analysis

Top Keywords

lipid accumulation
8
insulin sensitivity
8
insulin signaling
8
fat accumulation
8
glucose tolerance
8
female rats
8
insulin
6
liver
5
sex-dependent differences
4
differences rat
4

Similar Publications

Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.

View Article and Find Full Text PDF

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Background: Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement.

View Article and Find Full Text PDF

Lactobacillus acidophilus YL01 and its exopolysaccharides ameliorate obesity and insulin resistance in obese mice via modulating intestinal specific bacterial groups and AMPK/ACC signaling pathway.

Int J Biol Macromol

January 2025

College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China. Electronic address:

Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L.

View Article and Find Full Text PDF

Timosaponin B II as a novel KEAP1-NRF2 inhibitor to alleviate alcoholic liver disease:Receptor structure-based virtual screening and biological evaluation.

Chem Biol Interact

January 2025

Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032,P. R. China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China. Electronic address:

Oxidative stress induced by excess ethanol is an important factor in the progression of alcoholic liver disease (ALD). In recent years, inhibiting Kelch-like ECH-associated protein 1 (KEAP1) to activate the antioxidant regulator Nuclear factor erythroid 2-related factor 2 (NRF2) has been considered an effective strategy for treating oxidative stress-related diseases, but its application in ALD remains insufficiently explored. This study aims to discover high-affinity inhibitors targeting the KEAP1 receptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!