A convergent synthesis of highly substituted and stereodefined dihydroindanes is described from alkoxide-directed Ti-mediated cross-coupling of internal alkynes with substituted 4-hydroxy-1,6-enynes (substrates that derive from 2-directional functionalization of readily available epoxy alcohol derivatives). In addition to describing a new and highly stereoselective approach to bimolecular [2 + 2 + 2] annulation that delivers products not available with other methods in this area of chemical reactivity, evidence is provided to support annulation by way of regioselective alkyne-alkyne coupling, followed by metal-centered [4 + 2] rather than stepwise alkene insertion and reductive elimination. Overall, the reaction proceeds with exquisite stereochemical control and defines a convenient, convergent, and enantiospecific entry to fused carbocycles of great potential value in target-oriented synthesis and medicinal chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3275653PMC
http://dx.doi.org/10.1021/ja2105043DOI Listing

Publication Analysis

Top Keywords

asymmetric synthesis
4
synthesis dihydroindanes
4
dihydroindanes convergent
4
convergent alkoxide-directed
4
alkoxide-directed metallacycle-mediated
4
metallacycle-mediated bond
4
bond formation
4
formation convergent
4
convergent synthesis
4
synthesis highly
4

Similar Publications

Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H generation, avoiding its costly and risky distribution issues, but this "ME-to-H" electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional PtPd/(Ni,Co)(OH) catalyst with Pt single atoms (Pt) and Pd nanoclusters (Pd) anchored on OH-vacancy(V)-rich (Ni,Co)(OH) nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H generation. For MOR, OH* is preferentially adsorbed on Pd and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH).

View Article and Find Full Text PDF

Planar chirality found tremendous use in many fields, such as chemistry, optics, and materials science. In particular, planar chiral [2.2]paracyclophanes (PCPs) are a type of structurally interesting and practically useful chiral compounds bearing unique electronic and photophysical properties and thus have been widely used in π-stacking polymers, organic luminescent materials, and as a valuable toolbox for developing chiral ligands or organocatalysts.

View Article and Find Full Text PDF

Optically pure monosubstituted [n]paracyclophanes are promising candidates for material synthesis, asymmetric catalysis, and drug discovery. Thus far, only a few catalytic asymmetric synthesis processes have been reported for assessing these stained atropisomers. In this study, we describe a highly enantioselective synthesis of monosubstituted [n]paracyclophanes by combining desymmetrization and kinetic resolution.

View Article and Find Full Text PDF

Discovery and Total Synthesis of a New Class of Minor Immunosuppressive Plant Sesterterpenoids.

Angew Chem Int Ed Engl

January 2025

Kunming Institute of Botany Chinese Academy of Sciences, State Key Laboratory of Phytochemistry and Plant Resources in West China, Lanhei Road 132, Heilongtan, 650201, Kunming, CHINA.

Plant sesterterpenoids are an extremely rare family of natural products that generally possess novel chemical structures and diverse biological activities. Here, we report the discovery of an unprecedented group of minor plant sesterterpenoids, gracilisoids B-E (2-5), which feature two types of highly functionalized bicyclo[3.2.

View Article and Find Full Text PDF

Molecular Photoelectrocatalysis for Radical Reactions.

Acc Chem Res

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!