Oenococcus kitaharae is only the second member of the genus Oenococcus to be identified and is the closest relative of the industrially important wine bacterium Oenococcus oeni. To provide insight into this new species, the genome of the type strain of O. kitaharae, DSM 17330, was sequenced. Comparison of the sequenced genomes of both species show that the genome of O. kitaharae DSM 17330 contains many genes with predicted functions in cellular defence (bacteriocins, antimicrobials, restriction-modification systems and a CRISPR locus) which are lacking in O. oeni. The two genomes also appear to differentially encode several metabolic pathways associated with amino acid biosynthesis and carbohydrate utilization and which have direct phenotypic consequences. This would indicate that the two species have evolved different survival techniques to suit their particular environmental niches. O. oeni has adapted to survive in the harsh, but predictable, environment of wine that provides very few competitive species. However O. kitaharae appears to have adapted to a growth environment in which biological competition provides a significant selective pressure by accumulating biological defence molecules, such as bacteriocins and restriction-modification systems, throughout its genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250461PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029626PLOS

Publication Analysis

Top Keywords

genus oenococcus
8
oenococcus kitaharae
8
species genome
8
kitaharae dsm
8
dsm 17330
8
restriction-modification systems
8
oenococcus
5
species
5
kitaharae
5
functional divergence
4

Similar Publications

In winemaking, malolactic fermentation (MLF), which converts L-malic acid to L-lactic acid, is often applied after the alcoholic fermentation stage to improve the sensory properties of the wine and its microbiological stability. MLF is usually performed by lactic acid bacteria, which, however, are sensitive to the conditions of alcoholic fermentation. Therefore, the development of wine yeast strains capable of both alcoholic fermentation and MLF is an important task.

View Article and Find Full Text PDF

Enhancing wine fermentation through concurrent utilization of and lactic acid bacteria ( and ) or .

Food Chem X

December 2024

Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain.

Most commercially available red wines undergo alcoholic fermentation by yeasts, followed by a second fermentation with the lactic acid bacteria once the initial process is complete. However, this traditional approach can encounter complications in specific scenarios. These situations pose risks such as stalled alcoholic fermentation or the growth of undesirable bacteria while the process remains incomplete, leaving residual sugars in the wine.

View Article and Find Full Text PDF

Enhancing wine malolactic fermentation: Variable effect of yeast mannoproteins on Oenococcus oeni strains.

Food Microbiol

April 2025

Universitat Rovira i Virgili, Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain. Electronic address:

Lactic acid bacteria (LAB), principally Oenococcus oeni, play crucial roles in wine production, contributing to the transformation of L-malic acid into L-lactic acid during malolactic fermentation (MLF). This fermentation is influenced by different factors, including the initial LAB population and wine stress factors, such as nutrient availability. Yeast mannoproteins can enhance LAB survival in wine.

View Article and Find Full Text PDF

Heterologous expression of the Oenococcus oeni two-component signal transduction response regulator in the Lactiplantibacillus plantarum WCFS1 strain enhances acid stress tolerance.

BMC Microbiol

September 2024

Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China.

Background: Oenococcus oeni is a commercial wine-fermenting bacterial strain, owing to its high efficiency of malolactic fermentation and stress tolerance. The present study explored the function of key genes in O. oeni to enhance stress resistance by heterologous expression of these genes in another species.

View Article and Find Full Text PDF

Recently, prokaryotic laccases from lactic acid bacteria (LAB), which can degrade biogenic amines, were discovered. A laccase enzyme has been cloned from , a very important LAB in winemaking, and it has been expressed in . This enzyme has similar characteristics to those previously isolated from LAB as the ability to oxidize canonical substrates such as 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP), and potassium ferrocyanide K[Fe(CN)], and non-conventional substrates as biogenic amines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!