During the last decade several new analytical techniques have been developed for testing food products and clinical samples. One technique uses sensitive immunoassays such as enzyme-linked immunosorbent assay (ELISA) and latex agglutination. The most important step in developing sensitive immunoassays is the evaluation of the assay for specificity, cross-reactivity and sensitivity. False-negative results can easily be detected by adding known quantities of antigen to the sample. The most appropriate way to detect false-positive results is the specific inhibition of the immunological reaction by addition to the test-sample of either synthetic epitopes or anti-idiotype antibodies. The progress in recombinant DNA techniques now offers opportunities for application as analytical tools in food and clinical microbiology. Methods are being developed to detect microorganisms by their nucleic acid sequence using the so-called hybridization procedure. With this technique, labelled DNA fragments (probes) are hybridized with a complementary base sequence present in the microorganism. Foodborne pathogens can be detected by using a probe with a complementary base sequence which codes for toxin production. DNA-DNA hybridization techniques may replace the traditional cultural techniques for assaying pathogenic micro-organisms. However, more experience with these techniques is needed before further evaluation can be given.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0168-1605(90)90038-7 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Life Sciences, University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal.
Three bacterial strains, designated FZUC8N2.13, FBOR7N2.3 and FZUR7N2.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.
Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
January 2025
Institute of Plant Science and Resources, Okayama University, Okayama, Japan.
A Gram-stain-negative, rod-shaped, non-motile, aerobic, light-yellow-pigmented bacterium, designated as strain Y10, was isolated from Lumnitzera racemosa leaf in Iriomote island mangrove forests in Japan. The 16S rRNA gene sequence analysis revealed that the isolate Y10 was affiliated with the family Flavobacteriaceae, and the sequence showed the highest sequence identity to that of Neptunitalea chrysea NBRC 110019 (97.2%) and others with below 96% sequence identity.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20 and RR4-56, NNCM2, P31 and X9-2-2 were 98.9, 91.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!