We address a conceptual flaw in the backward-time approach to population genetics called coalescent theory as it is applied to diploid biparental organisms. Specifically, the way random models of reproduction are used in coalescent theory is not justified. Instead, the population pedigree for diploid organisms--that is, the set of all family relationships among members of the population--although unknown, should be treated as a fixed parameter, not as a random quantity. Gene genealogical models should describe the outcome of the percolation of genetic lineages through the population pedigree according to Mendelian inheritance. Using simulated pedigrees, some of which are based on family data from 19th century Sweden, we show that in many cases the (conceptually wrong) standard coalescent model is difficult to reject statistically and in this sense may provide a surprisingly accurate description of gene genealogies on a fixed pedigree. We study the differences between the fixed-pedigree coalescent and the standard coalescent by analysis and simulations. Differences are apparent in recent past, within ≈
Download full-text PDF
Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316654 PMC http://dx.doi.org/10.1534/genetics.111.135574 DOI Listing Publication Analysis
Top Keywords
Infect Drug Resist
December 2024
Department of Biomedical Sciences Laboratory, Wenzhou Medical University Affiliated Dongyang Hospital, Dongyang, Zhejiang, People's Republic of China.
Background: Diarrhea caused by non-O1/O139-group e (NOVC) tends to be mild and can be readily overlooked. In this report, a NOVC strain designated XXM was isolated from the blood of a 68-year-old male undergoing surgical treatment for a bile duct malignancy in October 2023.
Methods: XXM was identified through a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).
Cell Rep
December 2024
Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China. Electronic address:
Single-cell lineage tracing based on CRISPR-Cas9 gene editing enables the simultaneous linkage of cell states and lineage history at a high resolution. Despite its immense potential in resolving the cell fate determination and genealogy within an organism, existing implementations of this technology suffer from limitations in recording capabilities and considerable barcode dropout. Here, we introduce DuTracer, a versatile tool that utilizes two orthogonal gene editing systems to record cell lineage history at single-cell resolution in an inducible manner.
View Article and Find Full Text PDFGenetics
December 2024
Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
For many problems in population genetics, it is useful to characterize the distribution of fitness effects (DFE) of de novo mutations among a certain class of sites. A DFE is typically estimated by fitting an observed site frequency spectrum (SFS) to an expected SFS given a hypothesized distribution of selection coefficients and demographic history. The development of tools to infer gene trees from haplotype alignments, along with ancient DNA resources, provides us with additional information about the frequency trajectories of segregating mutations.
View Article and Find Full Text PDFAm J Obstet Gynecol
December 2024
Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, UT, USA; Intermountain Healthcare, Maternal-Fetal Medicine, Salt Lake City, UT, USA.
Genes (Basel)
October 2024
Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, SE-58758 Linköping, Sweden.
Background/objectives: Emerging forensic genetic applications, such as forensic investigative genetic genealogy (FIGG), advanced DNA phenotyping, and distant kinship inference, increasingly require dense SNP genotype datasets. However, forensic-grade DNA often contains missing genotypes due to its quality and quantity limitations, potentially hindering these applications. Genotype imputation, a method that predicts missing genotypes, is widely used in population and medical genetics, but its utility in forensic genetics has not been thoroughly explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!