Leukemia cells from patients with chronic lymphocytic leukemia (CLL) express a highly restricted immunoglobulin heavy variable chain (IGHV) repertoire, suggesting that a limited set of antigens reacts with leukemic cells. Here, we evaluated the reactivity of a panel of different CLL recombinant antibodies (rAbs) encoded by the most commonly expressed IGHV genes with a panel of selected viral and bacterial pathogens. Six different CLL rAbs encoded by IGHV1-69 or IGHV3-21, but not a CLL rAb encoded by IGHV4-39 genes, reacted with a single protein of human cytomegalovirus (CMV). The CMV protein was identified as the large structural phosphoprotein pUL32. In contrast, none of the CLL rAbs bound to any other structure of CMV, adenovirus serotype 2, Salmonella enterica serovar Typhimurium, or of cells used for propagation of these microorganisms. Monoclonal antibodies or humanized rAbs of irrelevant specificity to pUL32 did not react with any of the proteins present in the different lysates. Still, rAbs encoded by a germ line IGHV1-69 51p1 allele from CMV-seropositive and -negative adults also reacted with pUL32. The observed reactivity of multiple different CLL rAbs and natural antibodies from CMV-seronegative adults with pUL32 is consistent with the properties of a superantigen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3311256PMC
http://dx.doi.org/10.1182/blood-2011-08-374058DOI Listing

Publication Analysis

Top Keywords

rabs encoded
12
cll rabs
12
recombinant antibodies
8
encoded ighv1-69
8
cll
6
rabs
6
encoded
5
pul32
5
antibodies encoded
4
ighv1-69 react
4

Similar Publications

Motivation: Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions.

View Article and Find Full Text PDF

Metabolic plasticity is a hallmark of cancer, and metabolic alterations represent a promising therapeutic target. Since cellular metabolism is controlled by membrane traffic at multiple levels, we investigated the involvement of TBC1 domain-containing proteins (TBC1Ds) in the regulation of cancer metabolism. These proteins are characterized by the presence of a RAB-GAP domain, the TBC1 domain, and typically function as attenuators of RABs, the master switches of membrane traffic.

View Article and Find Full Text PDF

Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in , encoding Rab escort protein 1 (REP-1), leading to under-prenylation of Rab GTPases (Rabs). Despite ubiquitous expression of , the phenotype is limited to degeneration of the retina, retinal pigment epithelium (RPE), and choroid, with evidence for primary pathology in RPE cells. However, the spectrum of under-prenylated Rabs in RPE cells and how they contribute to RPE dysfunction remain unknown.

View Article and Find Full Text PDF

The molecular characterization of Rab11 and its immune roles in red swamp crayfish (Procambarus clarkii).

Int J Biol Macromol

August 2024

Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China. Electronic address:

The Rab proteins primarily regulate vesicular transport between membrane-bound organelles and are important for innate immune. However, there is currently a lack of studies on crustaceans regarding Rab proteins, particularly core Rabs. We identified a Rab11 gene from Procambarus clarkii (PcRab11) and evaluated its potential involvement in immune response.

View Article and Find Full Text PDF

Insights into the Binding Profile of Anti-chlorpyrifos Recombinant Antibodies: From Computational Simulation to Immunoassay Validation.

Anal Chem

August 2023

Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.

A novel virtual screening strategy was proposed for the profiling and discovery of active variable regions (VRs) that encode hapten-specific recombinant antibodies (rAbs). Chlorpyrifos, a hazardous organophosphorus pesticide, was selected as the target. First, a VR model-14G4 from anti-chlorpyrifos hybridoma was built via homology modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!