For commercial polyhydroxyalkanoate (PHA) production the objective is to maximise the fraction of feedstock that ends up as polymer, and minimise biomass growth. In this paper, oxygen limitation was applied to achieve this. Intracellular PHA content in mixed cultures in batch systems operated with low and high DO was compared. It is shown that in microaerophilic conditions a higher fraction of substrate is accumulated as PHA in comparison to high DO conditions, evidenced by elevated intracellular PHA content: in the order of 50% higher in the early stages of accumulation. However, the accumulation capacity is not affected by DO. The PHA content in biomass in both the low and high DO systems reached approximately 35%. The time taken for the PHA content in the low DO system to reach capacity was three times longer than in the high DO system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2012.086 | DOI Listing |
J Hazard Mater
January 2025
Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:
Biodegradable microplastics (BMPs), which form as biodegradable plastics degrade in agricultural settings, may influence plant growth and soil health. This study investigates the effects of BMPs on tomato growth and the microbial mechanisms involved. A greenhouse experiment applied BMPs-polyhydroxyalkanoate (PHA), polylactic acid (PLA), poly(butylene succinate-co-butylene adipate) (PBSA), and poly(butylene-adipate-co-terephthalate) (PBAT)-to tomato plants.
View Article and Find Full Text PDFSci Total Environ
January 2025
Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar. Electronic address:
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that can replace conventional plastics in different sectors. However, PHA commercialization is hampered due to their high production cost resulting from the use of high purity substrates, their low conversion into PHAs by using conventional microbial chassis and the high downstream processing cost. Taking these challenges into account, researchers are focusing on the use of waste by-products as alternative low-cost feedstocks for fast-growing and contamination-resistant halophilic microorganisms (Bacteria, Archaea…).
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, S117585, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), S138602, Singapore. Electronic address:
Pseudomonas putida degraded 35 % of compounds in alkali-pretreated lignin liquor under nitrogen-replete conditions but with low polyhydroxyalkanoates (PHA) production, while limiting nitrogen supplement improved PHA content (PHA/dry cell weight) to 43 % at the expense of decreased lignin degradation of 22 %. Increase of initial cell biomass (0.1-1.
View Article and Find Full Text PDFBiomaterials
December 2024
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China. Electronic address:
The effective prevention and treatment of anastomotic leakage after intestinal anastomosis for colorectal diseases is still a major clinical challenge. In order to assist intestinal anastomosis healing and avoid anastomotic leakage caused by high tension, low blood supply or infection, we designed a double-layer nanofiber intestinal anastomosis scaffold, which was composed of electrospun PTMC/PHA nanofibers as the main layer, and electrospun PVA/OHA-Gs nanofibers with antibacterial properties as the antibacterial surface layer. This double-layer scaffold has good toughness, its maximum tensile force value could reach 8 N, elongation could reach 400 %, and it has hydrophilic properties, and its contact angle was about 60°.
View Article and Find Full Text PDFJ Food Sci
January 2025
Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou, P.R. China.
Phytohemagglutinin (PHA), a natural tetramer comprising PHA-E and PHA-L subunits that preferentially bind to red and white blood cells, respectively, constitutes a significant antinutritional and allergenic factor in common bean seeds. The accurate measurement of PHA content is a prerequisite for ensuring food safety inspections and facilitating genetic improvements in common bean cultivars with reduced PHA levels. Currently, mainstream methods for PHA quantification involve hemagglutination assays and immunodetection, but these methods often require fresh animal blood and lack specificity and accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!