Background: Digitalis purpurea is an important ornamental and medicinal plant. There is considerable interest in exploring its transcriptome.
Results: Through high-throughput 454 sequencing and subsequent assembly, we obtained 23532 genes, of which 15626 encode conserved proteins. We determined 140 unigenes to be candidates involved in cardiac glycoside biosynthesis. It could be grouped into 30 families, of which 29 were identified for the first time in D. purpurea. We identified 2660 mRNA-like npcRNA (mlncRNA) candidates, an emerging class of regulators, using a computational mlncRNA identification pipeline and 13 microRNA-producing unigenes based on sequence conservation and hairpin structure-forming capability. Twenty five protein-coding unigenes were predicted to be targets of these microRNAs. Among the mlncRNA candidates, only 320 could be grouped into 140 families with at least two members in a family. The majority of D. purpurea mlncRNAs were species-specific and many of them showed tissue-specific expression and responded to cold and dehydration stresses. We identified 417 protein-coding genes with regions significantly homologous or complementary to 375 mlncRNAs. It includes five genes involved in secondary metabolism. A positive correlation was found in gene expression between protein-coding genes and the homologous mlncRNAs in response to cold and dehydration stresses, while the correlation was negative when protein-coding genes and mlncRNAs were complementary to each other.
Conclusions: Through comprehensive transcriptome analysis, we not only identified 29 novel gene families potentially involved in the biosynthesis of cardiac glycosides but also characterized a large number of mlncRNAs. Our results suggest the importance of mlncRNAs in secondary metabolism and stress response in D. purpurea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269984 | PMC |
http://dx.doi.org/10.1186/1471-2164-13-15 | DOI Listing |
Cardiovasc Diabetol
January 2025
Department of Cardiology, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China.
Background: Atherosclerotic dyslipidemia is associated with an increased risk of type 2 diabetes (T2D). Although previous studies have demonstrated an association between the atherogenic index of plasma (AIP) and insulin resistance, there remains a scarcity of large cohort studies investigating the association between AIP and the long-term risk of T2D in the general population. This study aims to investigate the potential association between AIP and the long-term risk of T2D in individuals with normal fasting plasma glucose levels.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77845, USA.
Background: Virus infection and herbivory can alter the expression of stress-responsive genes in plants. This study employed high-throughput transcriptomic and alternative splicing analysis to understand the separate and combined impacts on host gene expression in Arabidopsis thaliana by Myzus persicae (green peach aphid), and turnip mosaic virus (TuMV).
Results: By investigating changes in transcript abundance, the data shows that aphids feeding on virus infected plants intensify the number of differentially expressed stress responsive genes compared to challenge by individual stressors.
Sci Rep
January 2025
World Vegetable Center, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan.
Wild tomato species exhibit natural insect resistance, yet the specific secondary metabolites and underlying mechanisms governing the resistance remain unclear. Moreover, defense expression dynamically adapts to insect herbivory, causing significant metabolic changes and species-specific secondary metabolite accumulation. The present study aims to identify the resistance-related metabolites in wild tomato accessions that influence the defense mechanism against whitefly (Bemisia tabaci Asia II 7) and leafminer (Phthorimaea absoluta).
View Article and Find Full Text PDFSci Rep
January 2025
Department of andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
Diabetes is a detriment to male reproductive health, notably through its capacity to diminish secretion from accessory glands such as the seminal vesicles and prostate, which are crucial for reproductive function. Curcumin, a naturally derived polyphenol renowned for its anti-inflammatory and antioxidative attributes, has demonstrated potential in mitigating tissue damage across various organs in diabetic patients. Despite its established benefits, the specific impact of curcumin on seminal vesicle damage in the context of diabetes remains underexplored.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
Exposure to anthracene can cause skin and eye irritation, respiratory issues, and potential long-term health risks, including carcinogenic effects. It is also toxic to aquatic and human life and has the potential for long-term environmental contamination. This study aims to alleviate the adverse environmental effects of anthracene through fungal degradation, focusing on bioremediation approaches using bioinformatics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!