We describe the discovery, isolation and characterization of a highly thermostable alditol oxidase from Acidothermus cellulolyticus 11B. This protein was identified by searching the genomes of known thermophiles for enzymes homologous to Streptomyces coelicolor A3(2) alditol oxidase (AldO). A gene (sharing 48% protein sequence identity to AldO) was identified, cloned and expressed in Escherichia coli. Following 6xHis tag purification, characterization revealed the protein to be a covalent flavoprotein of 47 kDa with a remarkably similar reactivity and substrate specificity to that of AldO. A steady-state kinetic analysis with a number of different polyol substrates revealed lower catalytic rates but slightly altered substrate specificity when compared to AldO. Thermostability measurements revealed that the novel AldO is a highly thermostable enzyme with an unfolding temperature of 84 °C and an activity half-life at 75 °C of 112 min, prompting the name HotAldO. Inspired by earlier studies, we attempted a straightforward, exploratory approach to improve the thermostability of AldO by replacing residues with high B-factors with corresponding residues from HotAldO. None of these mutations resulted in a more thermostable oxidase; a fact that was corroborated by in silico analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371188 | PMC |
http://dx.doi.org/10.1007/s00253-011-3750-0 | DOI Listing |
Int J Mol Sci
December 2024
Engineering Research Center for Fruit Crops of Guizhou Province, Engineering Technology Research Centre for Rosa Roxburghii of National Forestry and Grassland Adminstratio, College of Agriculture, Guizhou University, Guiyang 550025, China.
fruit has a short postharvest shelf life, with rapid declines in quality and antioxidant capacity. This research assessed how phytic acid affects the antioxidant capacity and quality of fruit while in the postharvest storage period and reveals its potential mechanism of action. The findings suggested that phytic acid treatment inhibits the production of malondialdehyde (MDA) and enhances the activities and expressions of glutathione peroxidase (GPX), peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) while decreasing the generation of superoxide anions (O) and hydrogen peroxide (HO).
View Article and Find Full Text PDFBiotechnol J
December 2024
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China.
Background: Rare sugars are valuable and unique monosaccharides extensively utilized in the food, cosmetics, and pharmaceutical industries. Considering the high purification costs and the complex processes of enzymatic synthesis, whole-cell conversion has emerged as a significantly important alternative. The Escherichia coli strain was initially used in whole-cell synthesis of rare sugars.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China. Electronic address:
Abiotic stresses, including drought, salinity, and temperature extremes, are serious constraints to plant growth and agricultural development. These stresses that plants face in nature are often multiple and complex. Biotin carboxyl carrier protein subunit 2 (BCCP2) is one of the two subunits of biotin carboxyl carrier protein, which is a functional subunit of acetyl coenzyme A carboxylase, primarily studied for its role in fatty acid synthesis.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
VTT Technical Research Centre of Finland Ltd., Tekniikantie 21, 02150, Espoo, Finland.
Background: Biocatalysis offers a potentially greener alternative to chemical processes. For biocatalytic systems requiring cofactor recycling, hydrogen emerges as an attractive reducing agent. Hydrogen is attractive because all the electrons can be fully transferred to the product, and it can be efficiently produced from water using renewable electricity.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Endocrinology and Metabolism, The Institute of Endocrinology, National Health Commision of the People's Repiublic of China (NHC) Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China.
Clinicians often consider the use of dietary supplements to assist in lowering thyroid autoantibody titres in patients with Hashimoto's thyroiditis (HT). Currently, different supplements differ in their ability to reduce autoantibody levels. The purpose of this article is to compare the ability of different supplements to lower autoantibody titres and restore TSH levels through a systematic literature review.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!