Structural changes at the intra- as well as intermicellar level were induced by the LCST-type collapse transition of poly(N-isopropyl acrylamide) in ABA triblock copolymer micelles in water. The distinct process kinetics was followed in situ and in real-time using time-resolved small-angle neutron scattering (SANS), while a micellar solution of a triblock copolymer, consisting of two short deuterated polystyrene endblocks and a long thermoresponsive poly(N-isopropyl acrylamide) middle block, was heated rapidly above its cloud point. A very fast collapse together with a multistep aggregation behavior is observed. The findings of the transition occurring at several size and time levels may have implications for the design and application of such thermoresponsive self-assembled systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201100631 | DOI Listing |
Phys Rev Lett
December 2024
European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble, CS 40220, 38043, France.
Studying the properties and phase diagram of iron at high-pressure and high-temperature conditions has relevant implications for Earth's inner structure and dynamics and the temperature of the inner core boundary (ICB) at 330 GPa. Also, a hexagonal-closed packed to body-centered cubic (bcc) phase transition has been predicted by many theoretical works but observed only in a few experiments. The recent coupling of high-power laser with advanced x-ray sources from synchrotrons allows for novel approaches to address these issues.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China.
The identification of tipping points is essential for the prediction of collapses or other sudden changes in complex systems. Applications include studies of ecology, thermodynamics, climatology, and epidemiology. However, detecting early signs of proximity to a tipping is made challenging by complexity and nonlinearity.
View Article and Find Full Text PDFEcol Lett
December 2024
Lancaster Environment Centre, Lancaster University, Lancaster, UK.
Ecosystems are substantially changing in response to ongoing climate change. For example, coral reefs have declined in coral dominance, with some reefs undergoing regime shifts to non-coral states. However, reef responses may vary through multiple heat stress events, with the rarity of long-term ecological datasets rendering such understanding uncertain.
View Article and Find Full Text PDFJACS Au
December 2024
Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.
Understanding the origin and effect of the confinement of molecules and transition states within the micropores of a zeolite can enable targeted design of such materials for catalysis, gas storage, and membrane-based separations. Linear correlations of the thermodynamic parameters of molecular adsorption in zeolites have been proposed; however, their generalizability across diverse molecular classes and zeolite structures has not been established. Here, using molecular simulations of >3500 combinations of adsorbates and zeolites, we show that linear trends hold in many cases; however, they collapse for highly confined systems.
View Article and Find Full Text PDFEarly Child Res Q
September 2024
Department of Psychology, Arizona State University, Tempe, AZ, USA.
Parenting has long been a topic of research based on its importance for family and child outcomes. Recent methodological advances in person-centered approaches suggest that our understanding of parenting could be further advanced by examining parenting typologies across various parenting behaviors longitudinally. Accordingly, the current study aims to examine latent transitions in parenting practice patterns across four annual assessments during early childhood and examine whether individual- and family-level factors at baseline discriminate parenting transition patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!