Exercise improves motor deficits and alters striatal GFAP expression in a 6-OHDA-induced rat model of Parkinson's disease.

Neurol Sci

Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Published: October 2012

Astrocytic changes have been demonstrated in several neurodegenerative diseases, showing that these cells play an important role in functional recovery/maintenance against brain damage. Physical exercise is known to contribute to this process; however, the cellular mechanisms involved are not fully understood. This study investigated the effects of physical exercise on motor deficits and the expression of glial fibrillary acidic protein (GFAP) in a model of Parkinson's disease (PD). Rats were divided into four groups: sham sedentary (SS) and sham trained (ST); lesioned sedentary (LS) and lesioned trained (LT). 6-OHDA was infused unilaterally into the medial forebrain bundle. Behavioral tasks were applied to evaluate motor abilities. Tyrosine hydroxylase (TH-in substantia nigra) and GFAP (in striatum) immunoreactivities (ir) were semi-quantified using optical density. The animals submitted to treadmill training completed fewer pharmacological-induced rotations when compared with sedentary animals and they also showed ameliorated motor impairments. Interestingly, although no change in TH-ir, the exercise led to restored striatal GFAP expression in the LT group while there was no effect in the ST group. This study is the first study to show data indicating the recovery of GFAP expression post-exercise in this model and further research is necessary to determine the precise action mechanisms of exercise on astrocytes in the PD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10072-011-0925-5DOI Listing

Publication Analysis

Top Keywords

gfap expression
12
motor deficits
8
striatal gfap
8
model parkinson's
8
parkinson's disease
8
physical exercise
8
exercise
5
gfap
5
exercise improves
4
motor
4

Similar Publications

Spinal astrocyte-derived interleukin-17A promotes pain hypersensitivity in bone cancer mice.

Acta Pharm Sin B

December 2024

Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.

Spinal microglia and astrocytes are both involved in neuropathic and inflammatory pain, which may display sexual dimorphism. Here, we demonstrate that the sustained activation of spinal astrocytes and astrocyte-derived interleukin (IL)-17A promotes the progression of mouse bone cancer pain without sex differences. Chemogenetic or pharmacological inhibition of spinal astrocytes effectively ameliorates bone cancer-induced pain-like behaviors.

View Article and Find Full Text PDF

Objective: The study aims to investigate the long-term impacts of traumatic brain injury (TBI) on neuroinflammation and neuronal apoptosis in pediatric and adult mice, specifically focusing on how age-at-injury influences these processes.

Methods: Controlled cortical impact (CCI) was used to induce TBI in pediatric (21-25 days old) and adult (8-12 weeks old) C57Bl/6 male mice. Neuroinflammation was evaluated through immunoreactivity for Iba-1 and GFAP, while apoptosis was assessed using markers such as Bax, Bcl- 2, and pro-caspase-3.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Background: Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration.

View Article and Find Full Text PDF

Lipopolysaccharide preconditioning disrupts the behavioral and molecular response to restraint stress in male mice.

Neuroscience

January 2025

Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil. Electronic address:

Major depressive disorder (MDD) is a complex neuropsychiatric disorder potentially influenced by factors such as stress and inflammation. Chronic stress can lead to maladaptive brain changes that may trigger immune hyperactivation, contributing to MDD's pathogenesis. While the involvement of inflammation in MDD is well established, the effects of inflammatory preconditioning in animals subsequently exposed to chronic stress remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!