The aim of this study was to identify novel biofilm inhibitors from actinomycetes isolated from the Arctic against Vibrio cholerae, the causative agent of cholera. The biofilm inhibitory activity of actinomycetes was assessed using biofilm assay and was confirmed using air-liquid interphase coverslip assay. The potential isolates were identified using 16S rRNA gene sequencing. Of all, three isolates showed significant biofilm inhibition against V. cholerae. The results showed that 20% of the actinomycetes culture supernatant could inhibit up to 80% of the biofilm formation. When different extracted fractions were assessed, significant biofilm inhibition activity was only seen in the diethyl ether fraction of A745. At 200 μg ml(-1) of diethyl ether fraction, 60% inhibition of V. cholerae biofilm was observed. The two potential isolates were found to be Streptomyces sp. and one isolate belonged to Nocardiopsis sp. This is the first report showing a Streptomyces sp. and Nocardiopsis sp. isolated from the Arctic having a biofilm inhibitory activity against V. cholerae. The spread of drug resistant V. cholerae strains is a major clinical problem and the ineffectiveness in antibiotic treatment necessitates finding new modes of prevention and containment of the disease, cholera. The formation of biofilms during the proliferation of V. cholerae is linked to its pathogenesis. Hence, the bioactive compound from the culture supernatant of the isolates identified in this study may be a promising source for the development of a potential quorum sensing inhibitors against V. cholerae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-011-0073-4 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.
In addressing the formidable challenge posed by methicillin-resistant Staphylococcus aureus (MRSA), this investigation elucidates a novel therapeutic paradigm by specifically targeting the virulence factor sortase A (SrtA) utilizing Tubuloside A (TnA). SrtA plays a critical role in the pathogenicity of MRSA, primarily by anchoring surface proteins to the bacterial cell wall, which is crucial for the bacterium's ability to colonize and infect host tissues. By inhibiting SrtA, TnA offers a novel and distinct strategy compared to traditional antibiotics.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA.
The human body houses many distinct and interconnecting microbial populations with long-lasting systemic effects, where the oral cavity serves as a pathogens' reservoir. The correlation of different disease states strongly supports the need to understand the interplay between the oral tissue niche and microbiome. Despite efforts, the recapitulation of gingival architecture and physiological characteristics of the periodontal niche has yet to be accomplished by traditional cultural strategies.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Department of Health and Genomics, FISABIO Foundation, Valencia, Spain.
We have previously demonstrated that subgingival levels of nitrate-reducing bacteria, as well as the in vitro salivary nitrate reduction capacity (NRC), were diminished in periodontitis patients, increasing after periodontal treatment. However, it remains unclear if an impaired NRC in periodontitis can affect systemic health. To determine this, the effect of nitrate-rich beetroot juice (BRJ) on blood pressure was determined in 15 periodontitis patients before and 70 days after periodontal treatment (i.
View Article and Find Full Text PDFChemosphere
January 2025
University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:
The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:
Silver nitroprusside complex nanoparticles (AgN NPs) have garnered significant attention for their antimicrobial properties. However, challenges such as toxicity and limited biocompatibility often hinder their practical applications. Therefore, this study introduces a combined approach to fabricating AgN NPs with chitosan (CS), resulting in CS-AgN nanocomposites (CS-AgN NCs) with cytocompatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!