PUF (Pumilio/FBF) RNA-binding proteins and Argonaute (Ago) miRNA-binding proteins regulate mRNAs post-transcriptionally, each acting through similar, yet distinct, mechanisms. Here, we report that PUF and Ago proteins can also function together in a complex with a core translation elongation factor, eEF1A, to repress translation elongation. Both nematode (Caenorhabditis elegans) and mammalian PUF-Ago-eEF1A complexes were identified, using coimmunoprecipitation and recombinant protein assays. Nematode CSR-1 (Ago) promoted repression of FBF (PUF) target mRNAs in in vivo assays, and the FBF-1-CSR-1 heterodimer inhibited EFT-3 (eEF1A) GTPase activity in vitro. Mammalian PUM2-Ago-eEF1A inhibited translation of nonadenylated and polyadenylated reporter mRNAs in vitro. This repression occurred after translation initiation and led to ribosome accumulation within the open reading frame, roughly at the site where the nascent polypeptide emerged from the ribosomal exit tunnel. Together, these data suggest that a conserved PUF-Ago-eEF1A complex attenuates translation elongation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293257PMC
http://dx.doi.org/10.1038/nsmb.2214DOI Listing

Publication Analysis

Top Keywords

translation elongation
16
conserved puf-ago-eef1a
8
puf-ago-eef1a complex
8
complex attenuates
8
attenuates translation
8
translation
6
elongation
4
elongation puf
4
puf pumilio/fbf
4
pumilio/fbf rna-binding
4

Similar Publications

Diphthamide synthesis is linked to the eEF2-client chaperone machinery.

FEBS Lett

January 2025

Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.

The diphthamide modification of eukaryotic translation elongation factor (eEF2) is important for accurate protein synthesis. While the enzymes for diphthamide synthesis are known, coordination of eEF2 synthesis with the diphthamide modification to maintain only modified eEF2 is unknown. Physical and genetic interactions extracted from BioGRID show a connection between diphthamide synthesis enzymes and chaperones in yeast.

View Article and Find Full Text PDF

Bruch´s membrane (BM) is firmly connected posteriorly to the optic nerve head through the peripapillary choroidal border tissue, and anteriorly through the longitudinal ciliary muscle to the scleral spur. We assessed, whether a difference in the contractile state of the ciliary muscle influences the position of the posterior BM by lifting the posterior BM pole, i.e.

View Article and Find Full Text PDF

Deciphering transcription activity of mammalian early embryos unveils on/off of zygotic genome activation by protein translation/degradation.

Cell Rep

January 2025

Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, Henan 451163, P.R. China. Electronic address:

Quantification of transcription activities in mammalian preimplantation embryos is challenging due to a huge amount of maternally stored transcripts and paucity of research materials. Here, we investigate genome-wide transcription activities of mouse and human preimplantation embryos by quantifying elongating RNA polymerase II. Two transcriptional waves are identified in early mouse embryos, with summits at the 2-cell and 8-cell stages.

View Article and Find Full Text PDF

Elongator is a microtubule polymerase selective for polyglutamylated tubulin.

EMBO J

January 2025

Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.

Elongator is a tRNA-modifying complex that regulates protein translation. Recently, a moonlighting function of Elongator has been identified in regulating the polarization of the microtubule cytoskeleton during asymmetric cell division. Elongator induces symmetry breaking of the anaphase midzone by selectively stabilizing microtubules on one side of the spindle, contributing to the downstream polarized segregation of cell-fate determinants, and therefore to cell fate determination.

View Article and Find Full Text PDF

Polyglucosans are glycogen molecules with overlong chains, which are hyperphosphorylated in the neurodegenerative Lafora disease (LD). Brain polyglucosan bodies (PBs) cause fatal neurodegenerative diseases including Lafora disease and adult polyglucosan body disease (ABPD), for which treatments, biomarkers, and good understanding of their pathogenesis are currently missing. Mutations in the genes for the phosphatase laforin or the E3 ubiquitin ligase malin can cause LD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!