The gene (2304-bp) encoding a novel xylanolytic enzyme (XylK2) with a catalytic domain, which is 70% identical to that of Cellulomonas flavigena DSM 20109 GH6 β-1,4-cellobiohydrolase, was identified from an earthworm (Eisenia fetida)-symbiotic bacterium, Cellulosimicrobium sp. strain HY-13. The enzyme consisted of an N-terminal catalytic GH6-like domain, a fibronectin type 3 (Fn3) domain, and a C-terminal carbohydrate-binding module 2 (CBM 2). XylK2ΔFn3-CBM 2 displayed high transferase activity (788.3 IU mg(-1)) toward p-nitrophenyl (PNP) cellobioside, but did not degrade xylobiose, glucose-based materials, or other PNP-sugar derivatives. Birchwood xylan was degraded by XylK2ΔFn3-CBM 2 to xylobiose (59.2%) and xylotriose (40.8%). The transglycosylation activity of the enzyme, which enabled the formation of xylobiose (33.6%) and xylotriose (66.4%) from the hydrolysis of xylotriose, indicates that it is not an inverting enzyme but a retaining enzyme. The endo-β-1,4-xylanase activity of XylK2ΔFn3-CBM 2 increased significantly by approximately 2.0-fold in the presence of 50mM xylobiose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2011.12.106DOI Listing

Publication Analysis

Top Keywords

transglycosylation activity
8
cellulosimicrobium strain
8
strain hy-13
8
enzyme
5
novel modular
4
modular endo-β-14-xylanase
4
endo-β-14-xylanase transglycosylation
4
activity
4
activity cellulosimicrobium
4
hy-13 homologous
4

Similar Publications

Characterization of a maltononaose-producing amylopullulanase from Bacillus aryabhattai W310.

Int J Biol Macromol

December 2024

Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. Electronic address:

The recombinated amylopullulanase of PulW310B, pullulanase from Bacillus aryabhattai W310, was characterized. Sequence analysis of PulW310B showed that PulW310B has type I pullulanase structures including its typical region and the conserved regions of glycoside hydrolase family 13. Moreover, PulW310B was predicted to has typical domains of pullulanase and SSF51445 belonging to tansglycosidase.

View Article and Find Full Text PDF

Compartmentalized co-immobilization of cellulase and cellobiose phosphorylase within zeolitic imidazolate framework efficiently synthesizes 1-p-Glc: Glycosylation of FDG.

Int J Biol Macromol

December 2024

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:

Enzymatic glycosylation is an efficient and biocompatible approach to enhance natural product bioavailability. Cellobiose phosphorylase, a novel glycosyltransferase, utilizes 1-phospho-glucose (1-p-Glc) as a glycosyl donor for regioselective glycosylation of various natural substrates. However, the high cost of 1-p-Glc limits the economic feasibility of the process.

View Article and Find Full Text PDF

Structural elucidation and characterization of GH29A α-l-fucosidases and the effect of pH on their transglycosylation.

FEBS J

December 2024

Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark.

Article Synopsis
  • GH29A α-l-fucosidases are enzymes that help break down specific sugars in glycoconjugates and can also be used to create human milk oligosaccharides (HMOs) through a process called transglycosylation.
  • Researchers used bioinformatics tools and phylogenetic clustering to identify and analyze new microbial GH29A α-l-fucosidases from an underexplored group, as well as previously known enzymes, to determine their biochemical properties and behavior under different conditions.
  • The study found that transglycosylation of certain substrates was most effective at neutral to alkaline pH levels and revealed new structural insights into how these enzymes function, particularly regarding regioselectivity in product formation.
View Article and Find Full Text PDF
Article Synopsis
  • * Directed evolution was employed to improve the cyclomaltodextrin glucanotransferase (CGTase) enzyme, resulting in mutations that increased its affinity for maltose and overall transglycosylation activity.
  • * The N33K/S211G mutant demonstrated a 32.6% increase in trehalose yield, indicating enhanced performance of the double enzyme method for potential industrial application.
View Article and Find Full Text PDF

Enzymatic Routes to Designer Hemicelluloses for Use in Biobased Materials.

JACS Au

November 2024

Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.

Various enzymes can be used to modify the structure of hemicelluloses directly in vivo or following extraction from biomass sources, such as wood and agricultural residues. Generally, these enzymes can contribute to designer hemicelluloses through four main strategies: (1) enzymatic hydrolysis such as selective removal of side groups by glycoside hydrolases (GH) and carbohydrate esterases (CE), (2) enzymatic cross-linking, for instance, the selective addition of side groups by glycosyltransferases (GT) with activated sugars, (3) enzymatic polymerization by glycosynthases (GS) with activated glycosyl donors or transglycosylation, and (4) enzymatic functionalization, particularly via oxidation by carbohydrate oxidoreductases and via amination by amine transaminases. Thus, this Perspective will first highlight enzymes that play a role in regulating the degree of polymerization and side group composition of hemicelluloses, and subsequently, it will explore enzymes that enhance cross-linking capabilities and incorporate novel chemical functionalities into saccharide structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!