Background: MicroRNAs (miRNAs), a ubiquitous class of short RNAs, play vital roles in physiological and biochemical processes in plants by mediating gene silencing at post-transcriptional (PTGS) level. Tomato is a model system to study molecular basis of fleshy fruit ripening and senescence, ethylene biosynthesis and signal transduction owing to its genetic and molecular tractability. To study the functions of miRNAs in tomato fruit ripening and senescence, and their possible roles in ethylene response, the next generation sequencing method was employed to identify miRNAs in tomato fruit. Bioinformatics and molecular biology approaches were combined to profile the miRNAs expression patterns at three different fruit ripening stages and by exogenous ethylene treatment.
Results: In addition to 7 novel miRNA families, 103 conserved miRNAs belonging to 24 families and 10 non-conserved miRNAs matching 9 families were identified in our libraries. The targets of many these miRNAs were predicted to be transcriptional factors. Other targets are known to play roles in the regulation of metabolic processes. Interestingly, some targets were predicted to be involved in fruit ripening and softening, such as Pectate Lyase, beta-galactosidase, while a few others were predicted to be involved in ethylene biosynthesis and signaling pathway, such as ACS, EIN2 and CTR1. The expression patterns of a number of such miRNAs at three ripening stages were confirmed by stem-loop RT-PCR, which showed a strong negative correlation with that of their targets. The regulation of exogenous ethylene on miRNAs expression profiles were analyzed simultaneously, and 3 down-regulated, 5 up-regulated miRNAs were found in this study.
Conclusions: A combination of high throughput sequencing and molecular biology approaches was used to explore the involvement of miRNAs during fruit ripening. Several miRNAs showed differential expression profiles during fruit ripening, and a number of miRNAs were influenced by ethylene treatment. The results suggest the importance of miRNAs in fruit ripening and ethylene response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266637 | PMC |
http://dx.doi.org/10.1186/1471-2164-13-7 | DOI Listing |
mSystems
January 2025
Zoological Institute, Kiel University, Kiel, Germany.
The microbiomes of host organisms and their direct source environments are closely linked and key for shaping microbial community dynamics. The relationship between these linked dynamics is largely unexplored because source substrates are usually unavailable. To address this current knowledge gap, we employed bacteriovorous nematodes as a unique model system, for which source substrates like rotting apples can be easily collected.
View Article and Find Full Text PDFMol Hortic
January 2025
Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
Banana is sensitive to cold stress and often suffers from chilling injury with browning peel and failure to normal ripening. We have previously reported that banana chilling injury is accompanied by a reduction of miR528 accumulation, alleviating the degradation of its target gene MaPPO and raising ROS levels that cause peel browning. Here, we further revealed that the miR528-MaPPO cold-responsive module was regulated by miR156-targeted SPL transcription factors, and the miR156c-MaSPL4 module was also responsive to cold stress in banana.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Water Relations and Field Irrigation, Agricultural and Biological Research institute, National Research Centre, Giza, Egypt.
This study aimed to predict the toughness of date palm fruit (Barhi, Saqie, and Khodry varieties) at different ripening stages (Khalal, Rutab, and Tamar) using Hertz Theory by evaluating the physical and mechanical characteristics of the fruits. Physical measurements revealed that high moisture content in the Khalal stage led to larger dimensions and mass across all varieties, with Barhi dates showing a moisture content of 63.31%, which decreased to 32.
View Article and Find Full Text PDFJ Exp Bot
January 2025
College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
DNA methylation plays a crucial role in regulating fruit ripening and seed development. It remains unknown about the dynamic characteristics of DNA methylation and its regulation mechanisms in morpho-physiological dormancy (MPD)-typed seeds with recalcitrant characteristics. The Panax notoginseng seeds are defined by the MPD and are characterized by a strong sensitivity to dehydration during the after-ripening process.
View Article and Find Full Text PDFPlant Methods
January 2025
Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!