Primates are endowed with a brain about twice the size that of a mammal with the same body size, and humans have the largest brain relative to body size of all animals. This increase in brain size may be related to the acquisition of higher cognitive skills that permitted more complex social interactions, the evolution of culture, and the eventual ability to manipulate the environment. Nevertheless, in its internal structure, the primate brain shares a very conserved design with other mammals, being covered by a six-layered neocortex that, although expands disproportionately to other brain components, it does so following relatively well-defined allometric trends. Thus, the most fundamental events generating the basic design of the primate and human brain took place before the appearance of the first primate-like animal. Presumably, the earliest mammals already displayed a brain morphology radically different from that of their ancestors and that of their sister group, the reptiles, being characterized by the presence of an incipient neocortex that underwent an explosive growth in subsequent mammal evolution. In this chapter, we propose an integrative hypothesis for the origin of the mammalian neocortex, by considering the developmental modifications, functional networks, and ecological adaptations involved in the generation of this structure during the cretaceous period. Subsequently, the expansion of the primate brain is proposed to have relied on the amplification of the same, or very similar, developmental mechanisms as those involved in its primary origins, even in different ecological settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-444-53860-4.00001-5 | DOI Listing |
J Youth Adolesc
January 2025
Research Center of Adolescent Psychology and Behavior, School of Education, Guangzhou University, Guangzhou, China.
Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.
View Article and Find Full Text PDFScand J Med Sci Sports
January 2025
Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
The maximal oxygen uptake (V̇O) is typically higher in endurance-trained adolescents than in non-endurance-trained peers. However, the specific mechanisms contributing to this remain unclear, as well as the impact of training during this developmental stage. This study aims to compare V̇O and cardiovascular functions between 12-year-old endurance athletes and non-endurance-trained over a 14-month period.
View Article and Find Full Text PDFNat Commun
January 2025
School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA.
Zoologists have adduced morphological convergence among embryonic stages of closely related taxa, which has been called the phylotypic stage of embryogenesis. Transcriptomic analyzes reveal an hourglass pattern of gene expression during plant and animal embryogenesis, characterized by the accumulation of evolutionarily older and conserved transcripts during mid-embryogenesis, whereas younger less-conserved transcripts predominate at earlier and later embryonic stages. In contrast, comparisons of embryonic gene expression among different animal phyla describe an inverse hourglass pattern, where expression is correlated during early and late stages but not during mid-embryo development.
View Article and Find Full Text PDFJ Neurosci
January 2025
department of radiology, the first hospital of China medical University, Shenyang,110001, China
Hierarchy has been identified as a principle underlying the organization of human brain networks. However, it remains unclear how the network hierarchy is disrupted in Parkinson's disease (PD) motor symptoms and, how it is modulated by the underlying genetic architecture. The aim of this study was to explore alterations in the motor functional hierarchical organization of the cerebrum and their underlying genetic mechanism.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
January 2025
Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India. Electronic address:
Different neurological diseases including, Parkinson's, Alzheimer's, and Huntington's diseases extant momentous global disease burdens, affecting millions of lives for imposing a heavy disease burden on the healthcare systems. Despite various treatment strategies aimed at alleviating symptoms, treatments remain elusive and ineffective due to the disease's complexity. However, recent advancements in gene therapy via the CRISPR-Cas system offer ground-breaking and targeted treatment options.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!