The complete nucleotide sequence of both genomic (+)ss RNAs of a rhubarb isolate of Cherry leaf roll virus (CLRV) was determined. The larger RNA1 is 7918 nucleotides and the shorter RNA2 6360 nucleotides in size, each genome component comprising a single open reading frame (ORF). The RNA1-encoded polyprotein (P1) is 2112 amino acids long (235.6 kDa) containing domains characteristic for a proteinase-cofactor (PCo), nucleotide-binding helicase (Hel), genome-linked protein (VPg), proteinase (Pro), and an RNA-dependent RNA polymerase (Pol). The RNA2-encoded polyprotein (P2) has a molecular mass of 174.9 kDa (1589 aa) encoding the putative movement protein (MP) and the coat protein (CP) of CLRV. The genome region upstream of the MP has a coding capacity of 77 kDa, however processing of P2 by the putative virus-encoded proteinase and protein-function encoded by this region is unknown. Furthermore, it could be demonstrated that the 5'-termini including the N-terminal region (208 aa) of P1 and P2 of the rhubarb isolate of CLRV are nearly identical among the two genome segments. The taxonomic position of CLRV as member of the genus Nepovirus was confirmed by phylogenetic analyses employing the amino acid sequences of the conserved Pro-Pol region of RNA1, the complete P2, and the CP. However, clustering of Nepovirus-species according to allocated subgroups was inconsistent and depended on the compared genome fragment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virusres.2011.12.018 | DOI Listing |
Front Microbiol
December 2024
College of Biology, Hunan University, Changsha, China.
Introduction: Dengue viruses (DENVs), the causative agents of dengue hemorrhagic fever and dengue shock syndrome, undergo genetic mutations that result in new strains and lead to ongoing global re-infections.
Objectives: To address the growing complexity of identifying and tracking biological samples, this study screened RNA barcode segments for the four DENV serotypes, ensuring high specificity and recall rates for DENV identification using segments.
Results: Through analyzing complete genome sequences of DENVs, we screened eight barcode segments for DENV, DENV-1, DENV-2, DENV-3, and DENV-4 identification.
Purpose: The development of endocrine resistance remains a significant challenge in the clinical management of estrogen receptor-positive ( ) breast cancer. Metabolic reprogramming is a prominent component of endocrine resistance and a potential therapeutic intervention point. However, a limited understanding of which metabolic changes are conserved across the heterogeneous landscape of ER+ breast cancer or how metabolic changes factor into ER DNA binding patterns hinder our ability to target metabolic adaptation as a treatment strategy.
View Article and Find Full Text PDFManganese (Mn)-sensing riboswitches protect bacteria from Mn toxicity by upregulating expression of Mn exporters. The Mn aptamers share key features but diverge in other important elements, including within the metal-binding core. Although X-ray crystal structures of isolated aptamers exist, these structural snapshots lack crucial details about how the aptamer communicates the presence or absence of ligand to the expression platform.
View Article and Find Full Text PDFFront Behav Neurosci
December 2024
Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States.
Introduction: Anxiety disorders are among the most common mental illnesses in the US. An estimated 31.1% of U.
View Article and Find Full Text PDFPlant Dis
January 2025
Instituto Valenciano de Investigaciones Agrarias, Plant Protection and Biotechnology Center, Ctra Moncada-Naquera km 4.5, Moncada, Spain, 46113;
Peach-associated luteovirus (PaLV) belongs to the genus Luteovirus, family Tombusviridae. To date, PaLV has only been reported in peach (Prunus persica) and its presence detected in the Republic of Georgia (Wu et al., 2017), China (Zhou et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!