Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The study of native plants growing in hostile environments is useful to understand how these species respond to stress conditions. Parietaria diffusa (M.&K.) is able to survive in highly calcareous soils and extreme environments, such as house walls, without displaying any chlorotic symptoms. Here, we have investigated the existence of Strategy I complementary/alternative mechanism(s) involved in Fe solubilization and uptake and responsible for Parietaria's extraordinary efficiency. After assessing the specific traits involved in a calcicole-behaviour in the field, we have grown plants in conditions of Fe deficiency, either direct (-Fe) or induced by the presence of bicarbonate (+FeBic). Then, the growth performance, physiological and biochemical responses of the plants were investigated. The study shows that in Parietaria+FeBic, the classical responses of Strategy I plants are activated to a lower extent than in -Fe. In addition, there is a greater production of phenolics and organic acids that are both exuded and accumulated in the roots, which in turn show structures similar to 'proteoid-like roots'. We suggest that in the presence of this constraint, Parietaria undergoes some metabolic rearrangements that involve PEP-consuming reactions and an enhancement of the shikimate pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-3040.2012.02481.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!