During embryonic cartilage development, proliferation and differentiation are tightly linked with a transient cell cycle arrest observed during determination and before main extracellular matrix production. Aim of this study was to address whether these steps are imitated during in vitro differentiation of mesenchymal stem cells (MSCs) and are crucial for a proper chondrogenesis. Human MSCs were expanded in distinct media and subjected to pellet culture in chondrogenic medium. Cells were labeled with 5-iodo-2'-deoxyuridin (IdU) or treated with mitomycin C at various time points during culture. Apoptosis was detected by cleaved caspase 3. Proliferation rate of expanded MSCs at start of pellet culture showed a positive correlation with chondrogenesis according to DNA content, proteoglycan deposition, collagen type II content, and final pellet size. Evenly distributed IdU signals at day 1 diminished and became restricted primarily to the periphery by day 3. Between days 10 and 21, IdU-positive cells were detected throughout coinciding with collagen type II positivity. Little IdU incorporation occurred after day 21 and in areas of strong matrix deposition. DNA content decreased and apoptosis was detected up to day 14. Irreversible growth arrest by mitomycin C fully blocked chondrogenic differentiation and seemed to arrest differentiation at the stage reached at treatment. In conclusion, chondrogenesis involved a transient proliferation phase appearing simultaneously with start of collagen type II deposition and growth was crucial for proper chondrogenesis. Growth and differentiation steps, thus, seemed closely coordinated and resembled, with respect to proliferation, stages known from embryonic cartilage development. Stimulation of proliferation and prevention of early apoptosis are attractive goals to further improve MSC chondrogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411365 | PMC |
http://dx.doi.org/10.1089/scd.2011.0670 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.
Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.
View Article and Find Full Text PDFForensic Sci Med Pathol
January 2025
Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
Spontaneous pneumothorax (SP) is a condition defined by abnormal gas accumulation in the chest cavity. Mutations of the collagen type III alpha 1 chain, COL3A1 gene, are primarily linked to vascular Ehlers-Danlos syndrome (vEDS); however, they can also contribute to structural changes in the tissue, like bullae of the lungs. In this case report, we present a young, thinly built boy who died due to a spontaneous pneumothorax.
View Article and Find Full Text PDFClin Transl Gastroenterol
January 2025
Department of Clinical Genetics, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands.
Background: Classical-like Ehlers Danlos Syndrome type 1 (clEDS1) is a very rare form of Ehlers Danlos Syndrome (EDS) caused by tenascin-X (TNX) deficiency, with only 56 individuals reported. TNX is an extracellular matrix protein needed for collagen stability. Previous publications propose that individuals with clEDS1 might be at risk for gastrointestinal (GI) tract perforations and/or tracheal ruptures.
View Article and Find Full Text PDFJ Dent Sci
December 2024
Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.
View Article and Find Full Text PDFBiomater Res
January 2025
Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!