The bimolecular fluorescence complementation (BiFC) assay is a method for visualizing protein-protein interactions in living cells. To visualize the cofilin-actin interaction in living cells, a series of combinations of the N- and C-terminal fragments of Venus fused upstream or downstream of cofilin and actin were screened systematically. A new pair of split Venus fragments, Venus (1-210) fused upstream of cofilin and Venus (210-238) fused downstream of actin, was the most effective combination for visualizing the specific interaction between cofilin and actin in living cells. This pair of Venus fragments was also effective for detecting the active Ras-dependent interaction between H-Ras and Raf1 and the Ca(2+)-dependent interaction between calmodulin and its target M13 peptide. In vitro BiFC assays using the pair of purified BiFC probes provided the means to detect the specific interactions between cofilin and actin and between H-Ras and Raf1. In vivo and in vitro BiFC assays using the newly identified pair of Venus fragments will serve as a useful tool for measuring protein-protein interactions with high specificity and low background fluorescence and could be applied to the screening of inhibitors that block protein-protein interactions.

Download full-text PDF

Source
http://dx.doi.org/10.2144/000113777DOI Listing

Publication Analysis

Top Keywords

venus fragments
16
protein-protein interactions
12
living cells
12
cofilin actin
12
bimolecular fluorescence
8
fluorescence complementation
8
assays pair
8
pair split
8
split venus
8
fragments venus
8

Similar Publications

O_{2}^{+} Production Coming from CO_{2} Single-Event Electron Impact.

Phys Rev Lett

April 2024

Instituto de Física-Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-972, Brazil.

In CO_{2}-rich atmospheres that are always exposed to ionizing radiation (e.g., Venus and Mars), every fragmentation process can significantly impact the inventory of moieties present in these environments.

View Article and Find Full Text PDF

Purpose: GS-3583, an FMS-like tyrosine kinase 3 (FLT3) agonist Fc fusion protein, expanded conventional dendritic cells (cDC) in the periphery of healthy volunteers, suggesting potential for GS-3583 to increase cDCs in the tumor microenvironment and promote T cell-mediated antitumor activity in cancer patients. This phase Ib open-label study assessed GS-3583 in adults with advanced solid tumors.

Patients And Methods: Multiple escalating doses of GS-3583 (standard 3+3 design) were administered intravenously on days 1 and 15 of cycle 1 and day 1 of each subsequent 28-day cycle for up to 52 weeks.

View Article and Find Full Text PDF

The platelet-derived growth factor receptor (PDGFR) family of receptor tyrosine kinases allows cells to communicate with one another by binding to growth factors at the plasma membrane and activating intracellular signaling pathways to elicit responses such as migration, proliferation, survival and differentiation. The PDGFR family consists of two receptors, PDGFRα and PDGFRβ, that dimerize to form PDGFRα homodimers, PDGFRα/β heterodimers and PDGFRβ homodimers. Here, we overcame prior technical limitations in visualizing and purifying PDGFRα/β heterodimers by generating a cell line stably expressing C-terminal fusions of PDGFRα and PDGFRβ with bimolecular fluorescence complementation fragments corresponding to the N-terminal and C-terminal regions of the Venus fluorescent protein, respectively.

View Article and Find Full Text PDF

First Digits' Shannon Entropy.

Entropy (Basel)

October 2022

Faculty of Natural Sciences, University of Ulm, Einsteinallee 11, D-89069 Ulm, Germany.

Related to the letters of an alphabet, entropy means the average number of binary digits required for the transmission of one character. Checking tables of statistical data, one finds that, in the first position of the numbers, the digits 1 to 9 occur with different frequencies. Correspondingly, from these probabilities, a value for the Shannon entropy H can be determined as well.

View Article and Find Full Text PDF

It is nowadays widely accepted that sweet taste perception is elicited by the activation of the heterodimeric complex T1R2-T1R3, customarily known as sweet taste receptor (STR). However, the interplay between STR and sweeteners has not yet been fully clarified. Here through a methodology coupling molecular dynamics and the independent gradient model () approach we determine the main interacting signatures of the closed (active) conformation of the T1R2 Venus flytrap domain (VFD) toward aspartame.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!