Human vascular endothelial growth factor receptor type 2 (h-VEFGR2) is a receptor tyrosine kinase involved in the angiogenesis process and regarded as an interesting target for the design of anticancer drugs. Its activation/inactivation mechanism is related to conformational changes in its cytoplasmatic kinase domain, involving first among all the αC-helix in N-lobe and the A-loop in C-lobe. Affinity of inhibitors for the active or inactive kinase form could dictate the open or closed conformation of the A-loop, thus making the different conformations of the kinase domain receptor (KDR) domain different drug targets in drug discovery. In this view, a detailed knowledge of the conformational landscape of KDR domain is of central relevance to rationalize the efficiency and selectivity of kinase inhibitors. Here, molecular dynamics simulations were used to gain insight into the conformational switching activity of the KDR domain and to identify intermediate conformations between the two limiting active and inactive conformations. Specific energy barriers have been selectively removed to induce, and hence highlight at the atomistic level, the regulation mechanism of the A-loop opening. The proposed strategy allowed to repeatedly observe the escape of the KDR domain from the DFG-out free energy basin and to identify rare intermediate conformations between the DFG-out and the DFG-in structures to be employed in a structure-based drug discovery process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ci200513a | DOI Listing |
Int J Gen Med
December 2024
Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yun Nan, People's Republic of China.
Purpose: To identify the epithelial cell centre regulatory transcription factors in the gastric cancer (GC) microenvironment and provide a new strategy for the diagnosis and treatment of GC.
Methods: The GC single-cell dataset was downloaded from the Gene Expression Omnibus (GEO) database. The regulatory mechanisms of transcription factors in both pan-cancer and GC microenvironments were analysed using the Cancer Genome Atlas (TGCA) database.
Prev Nutr Food Sci
December 2024
School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea.
, a medicinal plant traditionally used in Southeast Asia, exerts protective effects against various inflammatory diseases, primarily due to its rich alkaloid content. Despite substantial evidence supporting its anti-inflammatory properties, the biological activities of are unclear. This study aimed to elucidate anticolitis mechanisms of alkaloids (CFAs) using an integrative approach of network pharmacology and molecular docking analyses.
View Article and Find Full Text PDFDrug Dev Res
December 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
Dual-targeting drug design has become a popular approach in investigating and developing potent anticancer agents. In this regard, carbonic anhydrase (CAIX) and vascular endothelial growth factor receptor (VEGFR-2) are emerging as highly effective targets in the battle against cancer. In the present study, two series of 4-thiazolidinones/2,4-thiazolidinediones carrying 2-methylbenzenesulfonamide derivatives were designed and synthesized as potential dual CAIX/VEGFR-2 inhibitors.
View Article and Find Full Text PDFEpigenomics
January 2025
Mother and Child Health, ICMR - Collaborating Centre of Excellence (CCoE), Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India.
Aim: This study aims to examine the gene expression and DNA methylation patterns of angiogenic factors in the placentae of Indian women who underwent assisted reproductive technology (ART) procedures and their association with maternal one-carbon metabolites and birth outcome.
Methods: Placental gene expression and DNA methylation of angiogenic factors (, , , ) in Indian women who underwent ART procedures ( = 64) and women who conceived naturally (Non-ART) ( = 93) was investigated using RT-qPCR and Epitect Methyl-II PCR assay kits. Maternal plasma one-carbon metabolites were assessed by CMIA technology.
Oncol Lett
January 2025
Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!