BACKGROUND: Electrospun nanofibers have been utilized in many biomedical applications as biomimetics of extracellular matrix proteins that promote self-organization of cells into 3D tissue constructs. As progress towards an artificial salivary gland tissue construct, we prepared nanofiber scaffolds using PLGA, a biodegradable and biocompatible material. METHOD OF APPROACH: We used electrospinning to prepare nanofiber scaffolds using PLGA with both DMF and HFIP as solvents. Using a design of experiment (DOE) approach, system and process parameters were optimized concurrently and their effects on the diameter of the resulting fibers were computed into a single model. A transfer function was used to reproducibly produce nanofibers of a defined diameter, which was confirmed by SEM. The mouse salivary gland epithelial cell line, SIMS, was seeded on the nanofiber scaffolds, and morphology, cell proliferation, and viability were assayed. RESULTS: Varying two or more parameters simultaneously yielded trends diverging from the linear response predicted by previous studies. Comparison of two solvents revealed that the diameter of PLGA nanofibers generated using HFIP is less sensitive to changes in the system and process parameters than are fibers generated using DMF. Inclusion of NaCl reduced morphological inconsistencies and minimized process variability. The resulting nanofiber scaffolds supported attachment, survival and cell proliferation of a mouse salivary gland epithelial cell line. In comparison with glass and flat PLGA films, the nanofibers promoted self-organization of the salivary gland cells into 3D cell clusters, or aggregates. CONCLUSIONS: These data indicate that nanofiber scaffolds promote salivary gland cell organization, and suggest that a nanofiber scaffold could provide a platform for engineering of an artificial salivary gland tissue construct. This study additionally provides a method for efficient production of nanofiber scaffolds for general application in tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3252387 | PMC |
http://dx.doi.org/10.1115/1.4001744 | DOI Listing |
Methods Mol Biol
January 2025
Institut de Génomique Fonctionnelle de Lyon (IGFL), UMR5242, Ecole Normale Supérieure de Lyon (ENSL), CNRS, Université de Lyon, Lyon, France.
Bimolecular Fluorescence Complementation (BiFC) is a powerful molecular imaging method used to visualize protein-protein interactions (PPIs) in living cells or organisms. BiFC is based on the reassociation of hemi-fragments of a monomeric fluorescent protein upon spatial proximity. It is compatible with conventional light microscopy, providing a resolution that is constrained by the diffraction of light to around 250 nm.
View Article and Find Full Text PDFStress
December 2025
Laboratory of Functional and Structural Biology, Biological Sciences Institute, Federal University of Pará, Belém, Brazil.
Stress occurs as a reaction to mental and emotional pressure, anxiety, or scarring. Chronic stress is defined as constant submission to these moments. It can affect several body systems, increase blood pressure, and weaken immunity, thereby interfering with physiological health processes.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
Purpose: Prostate-specific membrane antigen (PSMA) radioligand therapy is a promising treatment for metastatic castration-resistant prostate cancer (mCRPC). Several beta or alpha particle-emitting radionuclide-conjugated small molecules have shown efficacy in late-stage mCRPC and one, [[177Lu]Lu]Lu-PSMA-617, is FDA approved. In addition to tumor upregulation, PSMA is also expressed in kidneys and salivary glands where specific uptake can cause dose-limiting xerostomia and potential for nephrotoxicity.
View Article and Find Full Text PDFEar Nose Throat J
January 2025
Department of Otolaryngology-Head and Neck Surgery, Al-Bairuni University Hospital, Faculty of Medicine, Damascus University, Damascus, Syria.
Pleomorphic adenoma (PA) is the most common benign salivary gland tumor, primarily found in the parotid gland. Recurrences often extend into the parapharyngeal space (PPS), complicating management. This report presents a case of a recurrent giant PA in the PPS following a limited excision.
View Article and Find Full Text PDFInt J Surg Case Rep
December 2024
Department of Pathology, Al-Istishari Hospital, Ramallah, Palestine.
Introduction And Importance: Pulmonary mucoepidermoid carcinoma (PMEC) is a rare lung tumor, accounting 0.1-0.2 % of lung malignancies, commonly affecting adults under 50.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!