In this article, we review the recent progress in multiresolution modeling of structure and dynamics of protein, RNA and their complexes. Many approaches using both physics-based and knowledge-based potentials have been developed at multiple granularities to model both protein and RNA. Coarse graining can be achieved not only in the length, but also in the time domain using discrete time and discrete state kinetic network models. Models with different resolutions can be combined either in a sequential or parallel fashion. Similarly, the modeling of assemblies is also often achieved using multiple granularities. The progress shows that a multiresolution approach has considerable potential to continue extending the length and time scales of macromolecular modeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bib/bbr077 | DOI Listing |
Alzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Genome-wide association studies (GWAS) identified the ATP binding cassette subfamily A member 7 (ABCA7) gene as increasing risk for Alzheimer's disease (AD). ABC proteins transport various molecules across extra and intra-cellular membranes. ABCA7 is part of the ABC1 subfamily and is expressed in brain cells including neurons, astrocytes, microglia, endothelial cells and pericytes.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2024
Optical coherence tomography angiography (OCTA) plays a crucial role in quantifying and analyzing retinal vascular diseases. However, the limited field of view (FOV) inherent in most commercial OCTA imaging systems poses a significant challenge for clinicians, restricting the possibility to analyze larger retinal regions of high resolution. Automatic stitching of OCTA scans in adjacent regions may provide a promising solution to extend the region of interest.
View Article and Find Full Text PDFBioinformatics
October 2024
State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
Motivation: Intracellular organelle networks (IONs) such as the endoplasmic reticulum (ER) network and the mitochondrial (MITO) network serve crucial physiological functions. The morphology of these networks plays a critical role in mediating their functions. Accurate image segmentation is required for analyzing the morphology and topology of these networks for applications such as molecular mechanism analysis and drug target screening.
View Article and Find Full Text PDFCereb Cortex
September 2024
Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St, Boston, MA 02129, USA.
Accurate labeling of specific layers in the human cerebral cortex is crucial for advancing our understanding of neurodevelopmental and neurodegenerative disorders. Building on recent advancements in ultra-high-resolution ex vivo MRI, we present a novel semi-supervised segmentation model capable of identifying supragranular and infragranular layers in ex vivo MRI with unprecedented precision. On a dataset consisting of 17 whole-hemisphere ex vivo scans at 120 $\mu $m, we propose a Multi-resolution U-Nets framework that integrates global and local structural information, achieving reliable segmentation maps of the entire hemisphere, with Dice scores over 0.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
November 2024
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!