Oxidative stress contributes to several debilitating neurodegenerative diseases. To facilitate direct monitoring of the cytoplasmic oxidation state in neuronal cells, we have developed roTurbo by including several mutations: F223R, A206K, and six of the mutations for superfolder green fluorescent protein. Thus we have generated an improved redox sensor that is much brighter in cells and oxidizes more readily than roGFP2. Cytoplasmic expression of the sensor demonstrated the temporal pattern of 6-hydroxydopamine (6-OHDA) induced oxidative stress in a neuroblastoma cell line (SH-SY5Y). Two distinct oxidation responses were identified in SH-SY5Y cells but a single response observed in cells lacking monoamine transporters (HEK293). While both cell lines exhibited a rapid transient oxidation in response to 6-OHDA, a second oxidative response coincident with cell death was observed only in SH-SY5Y cells, indicating an intracellular metabolism of 6-OHDA, and or its metabolites are involved. In contrast, exogenously applied hydrogen peroxide induced a cellular oxidative response similar to the first oxidation peak, and cell loss was minimal. Glucose deprivation enhanced the oxidative stress induced by 6-OHDA, confirming the pivotal role played by glucose in maintaining a reduced cytoplasmic environment. While these studies support previous findings that catecholamine auto-oxidation products cause oxidative stress, our findings also support studies indicating 6-OHDA induces lethal oxidative stress responses unrelated to production of hydrogen peroxide. Finally, temporal imaging revealed the sporadic nature of the toxicity induced by 6-OHDA in neuroblastoma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10565-011-9209-3 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey.
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.
This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
March 2025
Department of Cardiology, Xinjiang Traditional Chinese Medicine Hospital, Xinjiang, China.
Schizophrenia (Heidelb)
January 2025
Xinjiang Clinical Medical Research Center of Mental Health, State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
Oxidative stress (OS) is crucial in schizophrenia (SCZ) pathology. Ferroptosis, a recently discovered cell death pathway linked to OS, might contribute to the development of SCZ. This study investigated the association between ferroptosis markers and cognitive impairments in chronic SCZ patients.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
Age-related macular degeneration (AMD) is a major cause of vision loss among adults. We investigated the protective effects of passion fruit seed extract (PFSE) and its rich polyphenol piceatannol in an AMD cell model in which human retinal pigment epithelial ARPE-19 cells were exposed to hydrogen peroxide (HO). Using a cell viability WST-8 assay, we revealed that PFSE and piceatannol increased the cellular viability of ARPE-19 cells by 130% and 133%, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!