Low-Temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors.

Adv Mater

Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.

Published: February 2012

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201103173DOI Listing

Publication Analysis

Top Keywords

low-temperature solution-processed
4
solution-processed alkali
4
alkali metal
4
metal doped
4
doped zno
4
zno high-performance
4
high-performance thin-film
4
thin-film transistors
4
low-temperature
1
alkali
1

Similar Publications

Low-threshold surface-emitting colloidal quantum-dot circular Bragg laser array.

Light Sci Appl

January 2025

State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.

Colloidal quantum dots (CQDs) are attractive gain media due to their wavelength-tunability and low optical gain threshold. Consequently, CQD lasers, especially the surface-emitting ones, are promising candidates for display, sensing and communication. However, it remains challenging to achieve a low-threshold surface-emitting CQD laser array with high stability and integration density.

View Article and Find Full Text PDF

Two-dimensional (2D) materials hold significant potential for the development of neuromorphic computing architectures owing to their exceptional electrical tunability, mechanical flexibility, and compatibility with heterointegration. However, the practical implementation of 2D memristors in neuromorphic computing is often hindered by the challenges of simultaneously achieving low latency and low energy consumption. Here, we demonstrate memristors based on 2D cobalt phosphorus trisulfide (CoPS), which achieve impressive performance metrics including high switching speed (20 ns), low switching energy (1.

View Article and Find Full Text PDF

Vanadium oxides are widely tunable materials, with many thermodynamically stable phases suitable for applications spanning catalysis to neuromorphic computing. The stability of vanadium in a range of oxidation states enables mixed-valence polymorphs of kinetically accessible metastable materials. Low-temperature synthetic routes to, and the properties of, these metastable materials are poorly understood and may unlock new optoelectronic and magnetic functionalities for expanded applications.

View Article and Find Full Text PDF

Leaftronics: Natural lignocellulose scaffolds for sustainable electronics.

Sci Adv

November 2024

Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany.

The global rise in electronic waste is alarming, driven by the persistent use of glass, epoxy, and plastic substrates owing to their cost, stability, flexibility, and transparency. This underscores the need for biodegradable alternatives with similar properties. This study shows that leaf-derived lignocellulose scaffolds can stabilize bio-sourced, solution-processed polymers by acting as natural sequestering media.

View Article and Find Full Text PDF

Metal halide perovskites and perovskite-related organic metal halide hybrids (OMHHs) have recently emerged as a new class of luminescent materials for light emitting diodes (LEDs), owing to their unique and remarkable properties, including near-unity photoluminescence quantum efficiencies, highly tunable emission colors, and low temperature solution processing. While substantial progress has been made in developing monochromatic LEDs with electroluminescence across blue, green, red, and near-infrared regions, achieving highly efficient and stable white electroluminescence from a single LED remains a challenging and under-explored area. Here, a facile approach to generating white electroluminescence is reported by combining narrow sky-blue emission from metal halide perovskites and broadband orange/red emission from zero-dimensional (0D) OMHHs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!