Transient silencing mediated by in vitro synthesized double-stranded RNA indicates that PsCdc14 is required for sporangial development in a soybean root rot pathogen.

Sci China Life Sci

College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China.

Published: December 2011

In many eukaryotic organisms, Cdc14 phosphatase regulates multiple biological events during anaphase and is essential for mitosis. It has been shown that Cdc14 is required for sporulation in the potato blight pathogen Phytophthora infestans; however, the role that the Cdc14 homolog (PsCdc14) plays in the soil-borne soybean root rot pathogen P. sojae remains ambiguous. PsCdc14 is highly expressed in sporulation, zoospore, and cyst life stages, but not in vegetative mycelia and infection stages, suggesting that it contributes to asexual reproduction and thus the spread of the disease. Double-stranded RNA (dsRNA) mediates gene silencing, a post-transcriptional and highly conserved process in eukaryotes, involving specific gene silencing through degradation of target mRNA. We combined in vitro dsRNA synthesis and a polyethylene glycol-mediated transformation system to construct a dsRNA-mediated transient gene silencing system; and then performed a functional analysis of PsCdc14 in P. sojae. PsCdc14 mRNA was dramatically reduced in transformants after protoplasts were exposed in in vitro synthesized PsCdc14 dsRNA, resulting in low sporangial production and abnormal development in P. sojae silencing lines. Furthermore, dsRNA-mediated transient gene silencing could enable elucidation of P. sojae rapid gene function, facilitating our understanding of the development and pathogenicity mechanisms of this oomycete fungus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11427-011-4250-2DOI Listing

Publication Analysis

Top Keywords

gene silencing
16
vitro synthesized
8
double-stranded rna
8
soybean root
8
root rot
8
rot pathogen
8
dsrna-mediated transient
8
transient gene
8
pscdc14
6
gene
5

Similar Publications

LACCASE35 Enhances Lignification and Resistance Against Pseudomonas syringae pv. actinidiae Infection in Kiwifruit.

Plant Physiol

January 2025

Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R.  China.

Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.

View Article and Find Full Text PDF

Gibberellin regulates the synthesis of stone cells in 'Nanguo' pear via the PuMYB91-PuERF023 module.

Physiol Plant

January 2025

Key Laboratory of Fruit Postharvest Biology, Liaoning Province; College of Horticulture, Shenyang Agricultural University, Shenyang, China.

Stone cells are one of the limiting factors affecting pear fruit quality and commodity value. The formation of stone cell is highly correlated with lignin deposition. However, the molecular mechanism of stone cell formation and regulation is still unclear.

View Article and Find Full Text PDF

Background: Chordoma, characterized as a slow growing yet locally invasive and destructive bone tumor mainly emerging in the sacrum and clivus, presents a unique challenge due to its rarity, hampering the development of effective treatment strategies. Comprehensive understanding of tumor biology is crucial to suggest novel treatment modalities. Reactive oxygen species (ROS), a family of chemically reactive and unstable oxygen derivatives, are controlled by an intracellular antioxidant system to maintain homeostasis.

View Article and Find Full Text PDF

Background: Retinopathy of prematurity (ROP) is a major cause of childhood blindness worldwide, highlighted by retinal neovascularization. Ubiquitin is present throughout the retina. The deubiquitinating enzyme ubiquitin-specific protease 39 (USP39) has been reported to be involved in angiogenesis.

View Article and Find Full Text PDF

Seed beetles are pernicious pests of leguminous seeds and are distributed globally. They cause great economic losses, particularly in developing countries. Of this genus, the cowpea weevil (Callosobruchus maculatus) is the most destructive and common species of this beetle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!