A detailed understanding of biomembrane architecture is still a challenging task. Many in vitro studies have shown lipid domains but much less information is known about the lateral organization of membrane proteins because their hydrophobic nature limits the use of many experimental methods. We examined lipid domain formation in biomimetic Escherichia coli membranes composed of phosphatidylethanolamine and phosphatidylglycerol in the absence and presence of 1% and 5% (mol/mol) membrane multidrug resistance protein, EmrE. Monolayer isotherms demonstrated protein insertion into the lipid monolayer. Subsequently, Brewster angle microscopy was applied to image domains in lipid matrices and lipid-protein mixtures. The images showed a concentration dependent impact of the protein on lipid domain size and shape and more interestingly distinct coexisting protein clusters. Whereas lipid domains varied in size (14-47μm), protein clusters exhibited a narrow size distribution (2.6-4.8μm) suggesting a non-random process of cluster formation. A 3-D display clearly indicates that these proteins clusters protrude from the membrane plane. These data demonstrate distinct co-existing lipid domains and membrane protein clusters as the monofilm is being compressed and illustrate the significant mutual impact of lipid-protein interactions on lateral membrane architecture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2011.12.012DOI Listing

Publication Analysis

Top Keywords

lipid domains
16
protein clusters
16
lipid
8
distinct coexisting
8
membrane protein
8
lipid domain
8
protein
7
membrane
6
domains
5
clusters
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!