There is great interest in the membrane lipids of archaea (glycerol dialkyl glycerol tetraethers [GDGTs]) as tracers of archaeal biomass because of their utility as paleoproxies and because of the biogeochemical importance of archaea. While core GDGTs (formed by hydrolysis of polar head groups of intact GDGTs after cell death) are appropriate for paleostudies, they have also been used to trace archaeal populations. Also, despite the small size (0.2 by 0.7 μm) of cultivated marine archaea, 0.7-μm glass-fiber filters (GFFs) are typically used to collect GDGTs from natural waters. We quantified both core and intact GDGTs in free-living (0.2- to 0.7-μm), suspended (0.7- to 60-μm), and aggregate (>60-μm) particle size fractions in Puget Sound (Washington State). On average, the free-living fraction contained 36% of total GDGTs, 90% of which were intact. The intermediate-size fraction contained 62% of GDGTs, and 29% of these were intact. The aggregate fraction contained 2% of the total GDGT pool, and 29% of these were intact. Our results demonstrate that intact GDGTs are largely in the free-living fraction. Because only intact GDGTs are present in living cells, protocols that target this size fraction and analyze the intact GDGT pool are necessary to track living populations in marine waters. Core GDGT enrichment in larger-size fractions indicates that archaeal biomass may quickly become attached or entrained in particles once the archaea are dead or dying. While the concentrations of the two pools were generally not correlated, the similar sizes of the core and intact GDGT pools suggest that core GDGTs are removed from the water column on timescales similar to those of cell replication, on timescales of days to weeks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3294470 | PMC |
http://dx.doi.org/10.1128/AEM.07016-11 | DOI Listing |
Front Microbiol
October 2023
Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
Cold seeps on the continental margins are characterized by intense microbial activities that consume a large portion of methane by anaerobic methanotrophic archaea (ANME) through anaerobic oxidation of methane (AOM). Although ANMEs are known to contain unique ether lipids that may have an important function in marine carbon cycling, their full lipidomic profiles and functional distribution in particular cold-seep settings are still poorly characterized. Here, we combined the 16S rRNA gene sequencing and lipidomic approaches to analyze archaeal communities and their lipids in cold seep sediments with distinct methane supplies from the South China Sea.
View Article and Find Full Text PDFFront Microbiol
September 2023
Marine Geology, Leibniz Institute for Baltic Sea Research - Warnemünde (IOW), Warnemünde, Germany.
Nitrososphaeria in the phylum Crenarchaeota, is a widespread archaeal class in the oceanic realm, playing an important role in the marine carbon and nitrogen cycle. Nitrososphaeria-derived membrane lipids, i.e.
View Article and Find Full Text PDFFront Microbiol
September 2021
Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States.
Thaumarchaeota and Thermoplasmatota are the most abundant planktonic archaea in the sea. Thaumarchaeota contain tetraether lipids as their major membrane lipids, but the lipid composition of uncultured planktonic Thermoplasmatota representatives remains unknown. To address this knowledge gap, we quantified archaeal cells and ether lipids in open ocean depth profiles (0-200 m) of the North Pacific Subtropical Gyre.
View Article and Find Full Text PDFFront Microbiol
December 2020
Section Geomicrobiology, GFZ German Research Centre for Geosciences, Potsdam, Germany.
The Hartoušov mofette system is a natural CO degassing site in the central Cheb Basin (Eger Rift, Central Europe). In early 2016 a 108 m deep core was obtained from this system to investigate the impact of ascending mantle-derived CO on indigenous deep microbial communities and their surrounding life habitat. During drilling, a CO blow out occurred at a depth of 78.
View Article and Find Full Text PDFSci Rep
January 2020
NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University., P.O. Box 59, NL-1790, AB Den Burg, The Netherlands.
The marine pelagic archaeal community is dominated by three major groups, the marine group I (MGI) Thaumarchaeota, and the marine groups II and III (MGII and MGIII) Euryarchaeota. Studies of both MGI cultures and the environment have shown that the MGI core membrane lipids are predominantly composed of glycerol dibiphytanyl glycerol tetraether (GDGT) lipids and the diether lipid archaeol. However, there are no cultured representatives of MGII and III archaea and, therefore, both their membrane lipid composition and potential contribution to the marine archaeal lipid pool remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!