The substantial T lymphocyte infiltrate found in cases of nasopharyngeal carcinoma (NPC) has been implicated in the promotion of both tumor growth and immune escape. Conversely, because malignant NPC cells harbor the Epstein-Barr virus, this tumor is a candidate for virus-specific T cell-based therapies. Preventing the accumulation of tumor-promoting T cells or enhancing the recruitment of tumor-specific cytotoxic T cells offers therapeutic potential. However, the mechanisms involved in T cell recruitment to this tumor are poorly understood. Comparing memory T cell subsets that have naturally infiltrated NPC tissue with their counterparts from matched blood revealed enrichment of CD8(+), CD4(+), and regulatory T cells expressing the chemokine receptor CXCR6 in tumor tissue. CD8(+) and (nonregulatory) CD4(+) T cells also were more frequently CCR5(+) in tumor than in blood. Ex vivo studies demonstrated that both receptors were functional. CXCL16 and CCL4, unique chemokine ligands for CXCR6 and CCR5, respectively, were expressed by the malignant cells in tumor tissue from the majority of NPC cases, as was another CCR5 ligand, CCL5. The strongest expression of CXCL16 was found on tumor-infiltrating cells. CCL4 was detected on the tumor vasculature in a majority of cases. These findings suggest that CXCR6 and CCR5 play important roles in T cell recruitment and/or retention in NPC and have implications for the pathogenesis and treatment of this tumor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajpath.2011.11.032 | DOI Listing |
Int Rev Cell Mol Biol
September 2024
Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru. Electronic address:
Chemokine receptors play diverse roles in the immune response against pathogens by recruiting innate and adaptive immune cells to sites of infection. However, their involvement could also be detrimental, causing tissue damage and exacerbating respiratory diseases by triggering histological alterations such as fibrosis and remodeling. This chapter reviews the role of chemokine receptors in the immune defense against SARS-CoV-2 infection.
View Article and Find Full Text PDFiScience
April 2024
National Jewish Health, Department of Pediatrics, Denver, CO 80206, USA.
Comput Biol Med
March 2024
Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China. Electronic address:
Continuous stimulation of tumor neoantigens and various cytokines in the tumor microenvironment leads to T cell dysfunction, but the specific mechanisms by which these key factors are distributed among different cell subpopulations and how they affect patient outcomes and treatment response are incompletely characterized. By integrating single-cell and bulk sequencing data of non-small cell lung cancer patients, we constructed a clinical outcome-associated T cell exhaustion signature. We discovered a significant association between the T cell exhaustion state and tumor cell hypoxia.
View Article and Find Full Text PDFCancer Res Commun
February 2024
Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
J Neuroinflammation
January 2023
Medical Faculty, Institute of Neuroanatomy, University of Bonn, 53115, Bonn, Germany.
Background: The presence of meningeal ectopic lymphoid structures (ELS) in a subgroup of patients diagnosed with secondary progressive multiple sclerosis (SPMS) corresponds to a pronounced cortical inflammation and an aggravated disease course. In MP4-induced experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), B cell aggregates develop in the central nervous system (CNS) in the chronic stage of the disease. Therefore, the model is suitable for studying key molecules of ELS development and maintenance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!