An experimental and theoretical study of L-Tryptophan in an aqueous solution, combining two-layered ONIOM and SCRF calculations.

Spectrochim Acta A Mol Biomol Spectrosc

Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.

Published: March 2012

ONIOM and SCRF calculations were performed to study the most stable theoretical structure of L-tryptophan in an aqueous solution phase and to observe the changes occurring in the structural and vibrational properties of L-tryptophan in the aqueous media. L-Tryptophan was characterized by infrared and Raman spectroscopies in the solid state and as an aqueous solution. Optimized geometries and relative stabilities for the L-tryptophan zwitterion were calculated while taking into account solvent effects using the self-consistent reaction field (SCRF) theory. The obtained results in the aqueous solution were compared with those calculated for the zwitterion in the gas phase by means of two-layered ONIOM calculations. For the complete assignments of the IR and Raman spectra of L-tryptophan in the aqueous solution phase, density functional theory (DFT) calculations were combined with Pulay's scaled quantum mechanical force field (SQMFF) methodology in order to fit the theoretical wavenumber values to the experimental values. Additionally, the roles of specific and bulk contributions from solvent effects on the properties of l-tryptophan were analyzed. Furthermore, bands corresponding to the normal modes of vibration were localized and assigned, and they served as the bases for the calculations of the corresponding force constants. Significant effects on the geometrical and vibrational frequencies were found for the studied zwitterion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2011.12.023DOI Listing

Publication Analysis

Top Keywords

aqueous solution
20
l-tryptophan aqueous
16
two-layered oniom
8
oniom scrf
8
scrf calculations
8
solution phase
8
properties l-tryptophan
8
solvent effects
8
l-tryptophan
7
aqueous
6

Similar Publications

Hydroxy radical (•OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over-oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer •OH in an aqueous solution of photo-irradiated Fe3+, where •OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO42-, the electron transfer from OH- to excited-state Fe3+ for •OH generation is retarded, while excessive •OH is consumed by generated Fe2+ to restore Fe3+.

View Article and Find Full Text PDF

Flow electrolytic separation of radionuclides for interference suppression in γ-spectrometry.

Anal Chim Acta

February 2025

Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, CH-8093, Switzerland; Laboratory of Radiochemistry, Centre for Nuclear Engineering and Sciences, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland. Electronic address:

Background: The direct and accurate measurement of low-level γ-emitters in samples from nuclear facilities is a challenging task due to the presence of high activities of dominant radionuclides. In this case a complex chemical separation is required to remove interfering radionuclides prior to γ-spectrometric analysis. Several radionuclides such as, Ag, Sb, Sn and Te are of relevance for radioanalytical analysis in nuclear facilities.

View Article and Find Full Text PDF

Although single bacteria have been applied to the Polycyclic Aromatic Hydrocarbons (PAHs) remediation, its efficacy is severely restricted by long degradation periods and low efficacy. A microbial symbiotic system founded by two or more bacterial strains may be an alternative to traditional remediation approaches. Its construction is, however, hampered by antagonistic interactions and remains challenging.

View Article and Find Full Text PDF

Elucidating on the Quaternary Structure of Viper Venom Phospholipase A Enzymes in Aqueous Solution.

Biochimie

January 2025

LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. Electronic address:

This study focuses on the quaternary structure of the viper-secreted phospholipase A (PLA), a central toxin in viper envenomation. PLA enzymes catalyse the hydrolysis of the sn-2 ester bond of membrane phospholipids. Small-molecule inhibitors that act as snakebite antidotes, such as varespladib, are currently in clinical trials.

View Article and Find Full Text PDF

Inorganic substrates in frozen solutions: Transformation mechanisms and interactions with organic compounds - A review.

Water Res

December 2024

Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China. Electronic address:

In cold environments, such as polar regions and high latitudes, the freezing of aqueous solutions plays a crucial role in releasing and transforming nutrients, organic compounds, and trace gases. Freezing processes typically affect biogeochemical cycles and environmental processes by reducing the rate of chemical reactions. However, substantial studies have found that some chemical reactions may accelerate unexpectedly under freezing conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!