In human mesial temporal lobe epilepsy (mTLE), seizure occurrence peaks in the late afternoon and early evening. This temporal binding of seizures has been replicated in animal models of mTLE following electrically-induced status epilepticus (SE). We hypothesized that in chronic epilepsy, alterations of circadian excitatory and inhibitory functions of the dentate gyrus (DG), which is believed to regulate the generation of limbic seizures, pathophysiologically contribute to the temporal binding of ictogenesis. We performed electrophysiological single and paired pulse measurements hourly over 24h in the DG of epileptic rats (n=8) 8 weeks after electrically induced SE. Results were compared to individual data obtained before induction of SE and to those of control animals (n=3). Pre and post SE data were analyzed in two distinct phases of the day, i.e. a high-seizure phase between 2p.m. and 10p.m. and a low-seizure phase between 10p.m. and 2p.m. In chronic epileptic animals, latency of evoked potentials was significantly reduced in the high-seizure phase (p=0.027) but not in the low-seizure phase. Compared to baseline values, paired pulse inhibition was significantly increased during the low-seizure phase (interpulse interval (IPI) 25ms, p=0.003; IPI 30ms; p<0.001) but not in the high-seizure phase. Similarly, when compared to controls, inhibition at IPI 20ms was diminished only in the high-seizure phase (p=0.027). Thus, in chronic epileptic animals, DG excitability is increased in the afternoon and early evening possibly contributing to the time of day-dependency of spontaneous seizures in this model system of mTLE. Alterations of circadian DG excitability in epileptic animals may be influenced by changes in hypothalamus-regulated superordinate functions such as excretion of endocrine hormones but further studies are needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2011.12.029 | DOI Listing |
Epilepsy Behav
April 2022
Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil. Electronic address:
Approximately 70% of women with epilepsy experience additional challenges in seizure exacerbation due to hormonal changes, particularly during fluctuations of estrogen-progesterone levels in the menstrual cycle, which is known as catamenial epilepsy. In animal models of epilepsy, a sustained increase in seizure frequency has been observed in female rats during the proestrus-estrus transition when estrogen levels are high and progesterone levels are low resembling catamenial epilepsy. Cannabidiol (CBD) has been proposed to have anticonvulsant and anti-inflammatory effects, able to decrease seizure duration and increase seizure threshold in rats with epilepsy.
View Article and Find Full Text PDFDev Med Child Neurol
June 2018
Department of Pediatrics, Peking University First Hospital, Beijing, China.
Aim: To analyze the clinical outcome and neuroimaging over a long duration follow-up in the currently largest series of acute encephalopathy after status epilepticus in patients with Dravet syndrome.
Method: Clinical and neuroimaging data of patients with Dravet syndrome with a history of acute encephalopathy (coma >24h) after status epilepticus from February 2005 to December 2016 at Peking University First Hospital were reviewed retrospectively.
Results: Thirty-five patients (15 males, 20 females) with a history of acute encephalopathy were enrolled from a total of 624 patients with Dravet syndrome (5.
Front Syst Neurosci
July 2014
Department of Psychiatry, University of Pennsylvania Philadelphia, PA, USA ; Research Service, Department of Veterans Affairs Medical Center Coatesville, PA, USA ; Department of Biomedical Sciences, Cooper Medical School of Rowan University Camden, NJ, USA.
The epilepsies are a heterogeneous group of neurological diseases defined by the occurrence of unprovoked seizures which, in many cases, are correlated with diurnal rhythms. In order to gain insight into the biological mechanisms controlling this phenomenon, we characterized time-of-day effects on electrical seizure threshold in mice. Male C57BL/6J wild-type mice were maintained on a 14/10 h light/dark cycle, from birth until 6 weeks of age for seizure testing.
View Article and Find Full Text PDFLancet Neurol
June 2013
St Vincent's Hospital, Melbourne, Victoria, Australia.
Background: Seizure prediction would be clinically useful in patients with epilepsy and could improve safety, increase independence, and allow acute treatment. We did a multicentre clinical feasibility study to assess the safety and efficacy of a long-term implanted seizure advisory system designed to predict seizure likelihood and quantify seizures in adults with drug-resistant focal seizures.
Methods: We enrolled patients at three centres in Melbourne, Australia, between March 24, 2010, and June 21, 2011.
Exp Neurol
March 2012
Department of Neurology, Otto-von-Guericke-Universität, Magdeburg, Germany.
In human mesial temporal lobe epilepsy (mTLE), seizure occurrence peaks in the late afternoon and early evening. This temporal binding of seizures has been replicated in animal models of mTLE following electrically-induced status epilepticus (SE). We hypothesized that in chronic epilepsy, alterations of circadian excitatory and inhibitory functions of the dentate gyrus (DG), which is believed to regulate the generation of limbic seizures, pathophysiologically contribute to the temporal binding of ictogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!