Removal of estrogens in municipal wastewater treatment plants: a Chinese perspective.

Environ Pollut

School of Environment and Energy, Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.

Published: June 2012

Great efforts have been made in China to retrofit and upgrade the existing municipal wastewater treatment plants (WWTPs) for enhanced removal of organic substrates and in particular nutrients. However, the removal of trace recalcitrant or hazardous organic chemicals, e.g. steroid estrogens, one group of typical endocrine disrupting chemicals, has long been overlooked. The extensive investigations on estrogen removal rates in global and Chinese WWTPs and the estrogen biodegradation kinetics results in batch laboratory experiments are reviewed in this study. The effects of estrogen initial concentration and nitrifying activated sludge are highlighted. Challenges existing in current estrogen studies are pointed out, which are relevant for researches on fate and behavior of similar down-the-drain chemicals in both Chinese and global WWTPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2011.12.025DOI Listing

Publication Analysis

Top Keywords

municipal wastewater
8
wastewater treatment
8
treatment plants
8
removal
4
removal estrogens
4
estrogens municipal
4
plants chinese
4
chinese perspective
4
perspective great
4
great efforts
4

Similar Publications

This study investigates the potential of phototrophic microalgae, specifically Chlorella protothecoides, for biological wastewater treatment, with a focus on the effects of air temperature and CO concentration on nutrient removal from tertiary municipal wastewater. Utilizing both the Monod and Arrhenius kinetic models, the research examines how temperature and nutrient availability influence microalgal growth and nutrient removal. The study finds that optimal biomass productivity occurs at 25 °C, with growth slowing at higher temperatures (30 °C, 40 °C, and 45 °C).

View Article and Find Full Text PDF

Ultramicroporous Tröger's Base Framework Membranes With Ionized Sub-nanochannels for Efficient Acid/Alkali Recovery.

Adv Sci (Weinh)

January 2025

Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe, 6500034, Japan.

Membrane technology holds significant potential for the recovery of acids and alkalis from industrial wastewater systems, with ion exchange membranes (IEMs) playing a crucial role in these applications. However, conventional IEMs are limited to separating only monovalent cations or anions, presenting a significant challenge in achieving concomitant H⁺/OH⁻ permselectivity for simultaneous acid and alkali recovery. To address this issue, the charged microporous polymer framework membranes are developed, featuring rigid Tröger's Base network chains constructed through a facile sol-gel process.

View Article and Find Full Text PDF

The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.

View Article and Find Full Text PDF

The tolerance and degradation characteristics of a marine oil-degrading strain Acinetobacter sp. Y9 were investigated in the presence of diesel oil and simulated radioactive nuclides (Mn, Co, Ni, Sr, Cs) at varying concentrations, as well as exposure to γ-ray radiation (Co-60). The maximum tolerable concentrations for Coand Ni were found to be 5 mg/l and 25 mg/l, respectively, while the tolerable concentrations for Mn, Sr, and Cs exceeded 400 mg/l, 1000 mg/l, and 1000 mg/l, respectively.

View Article and Find Full Text PDF

Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!