Alternative biofuel production in non-natural hosts.

Curr Opin Biotechnol

Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA.

Published: October 2012

Global energy and environmental concerns have stimulated increased efforts in synthesizing petroleum-derived products from renewable resources. Biological production of metabolites for fuel is increasingly becoming a feasible, renewable, environmentally sound alternative. However, many of these chemicals are not highly produced in any known native organism. Here we review the current progress of modifying microorganisms with heterogeneous elements for the production of biofuels. This strategy has been extensively employed in a variety of hosts for the development of production of various alcohols, fatty acids, alkenes and alkanes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.copbio.2011.12.019DOI Listing

Publication Analysis

Top Keywords

alternative biofuel
4
production
4
biofuel production
4
production non-natural
4
non-natural hosts
4
hosts global
4
global energy
4
energy environmental
4
environmental concerns
4
concerns stimulated
4

Similar Publications

Genome-Wide Association Study and Genomic Predictions for Hydroxycinnamate Concentrations in Maize Stover.

J Agric Food Chem

January 2025

UA MBG-UVIGO, Misión Biológica de Galicia (CSIC), Pazo de Salcedo, Pontevedra 36143, España.

Hydroxycinnamates, like ferulate (FA) and -coumarate (CA), are important components of maize cell walls, which influence pest resistance, ruminal digestibility, and biofuel production. Increasing their concentration has been linked to increased pest resistance, but also may lead to a decrease in nutritional value or bioethanol production efficiency. Therefore, improving forage quality or biofuel production without compromising plant resistance and a thorough understanding of the biosynthesis and deposition of these compounds is necessary, especially in stover, which is the feedstock for second-generation biofuel production and determines animal forage quality.

View Article and Find Full Text PDF

Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.

View Article and Find Full Text PDF

Background: Paenibacillus polymyxa, is a Gram-positive, plant growth promoting bacterium, known for producing 98% optically pure 2,3-butanediol, an industrially valuable chemical for solvents, plasticizers and resins. Immobilization of Paenibacillus polymyxa has been proposed to improve the cell stability and efficiency of the fermentation process, reduce contamination and provide easy separation of butanediol in the culture broth as compared to conventional bioprocesses. This research aimed to explore the potential of Paenibacillus polymyxa with immobilization technique to produce 2,3-butanediol.

View Article and Find Full Text PDF

Herein, we discuss the idea that fluorescent materials/molecules should logically show potential photoelectrochemistry (PEC) activity, and, in particular, the PEC of fluorescent small molecules (previously usually acting only as dye sensitizers for conventional semiconductors) is explored. After examining the PEC activities of some typical inorganic or organic fluorescent materials/molecules and by adopting methyl violet (MV) with the highest PEC activity among the examined fluorescent small molecules, a new and efficient (MV/Au nanoparticles (AuNPs))/fluorine-doped tin oxide (FTO) photoanode without conventional semiconductor(s) is prepared by layer-by-layer alternating the electrodeposition of AuNPs and the adsorption of MV. A bilirubin oxidase (BOD)/CuCoO/FTO bio-photocathode is prepared by electrodeposition, calcination and cast-coating.

View Article and Find Full Text PDF

The quest for cleaner and sustainable energy sources is crucial, considering the current scenario of a steep rise in energy consumption and the fuel crisis, exacerbated by diminishing fossil fuel reserves and rising pollutants. In particular, the bioaccumulation of hazardous substances like trivalent chromium has not only disrupted the fragile equilibrium of the ecological system but also poses significant health hazards to humans. Microalgae emerged as a promising solution for achieving sustainability due to their ability to remediate contaminants and produce greener alternatives such as biofuels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!