The Greater White-toothed shrew Crocidura russula is short-lived species and the phase of senescence is greatly elongated in captivity. The loss of rhythmicity of biological functions that accompanies its aging is also well documented. C. russula is thus an excellent model to test the effects of aging on biological clocks. Melatonin is a key hormone in the synchronization of behaviors, metabolisms and physiological regulations with environmental factors. In the present work we want to know if the loss of rhythmicity and the reduced melatonin levels registered by the second year of life in this species could be associated to modified ultrastructural features of the pineal parenchyma, site of melatonin synthesis. Transmission electron microscopy (TEM) analysis of young (1-4 months) and old (25-28 months) shrew's pineals show that in older individuals, the parenchyma undergoes alterations affecting mainly nucleus, mitochondria and endoplasmic reticulum cisternae, with increased numbers of dense bodies and the formation of many concretions as well as a depletion of secretory products. These changes suggest a process of slowing pinealocytes metabolism which could explain the gradual reduction of melatonin levels registered during aging in C. russula.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.crvi.2011.11.001DOI Listing

Publication Analysis

Top Keywords

loss rhythmicity
8
melatonin levels
8
levels registered
8
[cellular aspects
4
aging
4
aspects aging
4
aging pineal
4
pineal gland
4
gland shrew
4
shrew crocidura russula]
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!