Background: Hydrogen gas, an antioxidant agent, was found to protect against cerebral and myocardial ischemia-reperfusion (I/R) injury. In the present study, we investigated the effect of hydrogen-rich saline (HRS) on the I/R-induced lung injury.
Methods: Left lung of male New Zealand White rabbits rendered normothermic ischemia for 60 min and reperfused for up to 240 min. Treated animals received intraperitoneal injection of 5 mL/kg HRS or the same volume of normal saline 10 min before the start of reperfusion. Blood and lung tissue samples were obtained for blood gas and biochemical analyses. The tissues obtained from lower lobe of left lung were used for histologic examination.
Results: After 240 min of reperfusion, intraperitoneal administration of HRS increased PaO2/FiO2 ratio and superoxide dismutase activities, and decreased malondialdehyde contents, proinflammatory cytokines expression, and myeloperoxidase activities, along with reduced wet/dry ratio and histologic injury scores (P < 0.05 versus I/R group).
Conclusions: These results suggest that intraperitoneal administration of HRS before reperfusion protects the lung from I/R injury. The protective effect seems to be closely related to regulating oxidative damage and antioxidant enzyme activities and neutrophil infiltration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jss.2011.10.001 | DOI Listing |
J Cell Mol Med
January 2025
Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
Impaired wound healing affects the life quality of patients and causes a substantial financial burden. Hydrogen-rich medium is reported to have antioxidant and anti-inflammatory effects. However, the role of hydrogen-rich saline (HRS) in cutaneous wound healing remains largely unexplored, especially by metabolomics.
View Article and Find Full Text PDFRedox Biol
February 2025
Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China. Electronic address:
Chronic itch which is primarily associated with dermatologic, systemic, or metabolic disorders is often refractory to most current antipruritic medications, thus highlighting the need for improved therapies. Oxidative damage is a novel determinant of spinal pruriceptive sensitization and synaptic plasticity. The resolution of oxidative insult by molecular hydrogen has been manifested.
View Article and Find Full Text PDFJ Inflamm Res
October 2024
Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China.
Free Radic Biol Med
November 2024
Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, 643000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 643000, China. Electronic address:
Shock
September 2024
Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang, China.
Sepsis causes dysfunction in different organs, but the pathophysiological mechanisms behind it are similar and mainly involve complex hemodynamic and cellular dysfunction. The importance of microcirculatory dysfunction in sepsis is becoming increasingly evident, in which endothelial dysfunction and glycocalyx degradation play a major role. This study aimed to investigate the effects of hydrogen-rich saline (HRS) on renal microcirculation in septic renal failure, and whether Sirt1 was involved in the renoprotective effects of HRS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!