Normal placental development and function is essential for fetal growth of eutherian mammals. Mutational studies have shown that numerous growth factors are required for placental development and differentiation of placental lineages. Here, using a gene-trap mutant mouse line, Crim1(KST264), we show that Crim1 is essential for murine placental development. Crim1 is a developmentally expressed, trans-membrane regulator of growth factor activity. Crim1(KST264/KST264) mutant placentae displayed hypoplasia from 13.5 dpc, and altered structure from 15.5 dpc, including alterations in cell number in both the junctional and labyrinth zones. Using the reporter gene from the Crim1(KST264) allele, we found that Crim1 is expressed in multiple cell types of the placenta, including strong expression in the spongiotrophoblast cells of the junctional zone. In the junctional zone of Crim1(KST264/KST264) placentae, there was an increase in the glycogen trophoblast cells adjacent to the spongiotrophoblast cells. In the labyrinth zone, we found a decrease in the density of sinusoidal-trophoblast giant cells. Our findings show that Crim1 is required for placental development, and is necessary for the proper differentiation of sinusoidal-trophoblast giant cells and glycogen trophoblast cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.placenta.2011.12.014 | DOI Listing |
Cureus
December 2024
Neonatology Department, Daniel de Matos Maternity, Coimbra Local Health Unit, Coimbra, PRT.
Monochorionic twin pregnancies carry a risk of perinatal complications due to shared placental anastomoses, which can cause uneven blood distribution and lead to conditions like selective fetal growth restriction (sFGR). This case describes a monochorionic pregnancy complicated by preeclampsia and late-onset sFGR of twin B. Labor was prematurely induced and a 45% weight discordance between the twins was confirmed.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, 275 E Hancock St, Rm 195, Detroit, MI, 48201, USA.
Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations.
View Article and Find Full Text PDFPlacenta
December 2024
Johns Hopkins University Bloomberg School of Public Health, USA. Electronic address:
Chronic arsenic exposure affects over 140 million people globally. While arsenic easily crosses the placenta, the specific mechanisms impacting placental immune cell populations and fetal health are unclear. Maternal arsenic exposure is epidemiologically linked to increased infection risk, mortality, and cancer susceptibility in offspring, emphasizing the importance of understanding placentally-mediated immune effects.
View Article and Find Full Text PDFPlacenta
December 2024
Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. Electronic address:
Introduction: The placenta supports the metabolic and respiratory requirements of the fetus. Placental disorders, caused by various pathophysiological mechanisms, may result in adverse pregnancy and neonatal outcomes. Knowledge gaps remain in the understanding, reporting and interpretation of placental pathology relating to clinical conditions.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Introduction: We investigated the specific factors driving abnormal angiogenesis in Alzheimer's disease (AD) and its role in cerebrovascular lesions and neurodegeneration.
Methods: We assessed cerebrovascular pathologies, amyloid-beta (Aβ), and tau pathologies in post mortem human brains and detected 12 angiogenic factors in cerebrospinal fluid (CSF) from the China Aging and Neurodegenerative Disease Initiative (CANDI) cohort.
Results: We observed severe blood-brain barrier damage and elevated levels of the vascular marker CD31 in human AD brains, which had a stronger correlation with tau pathology than Aβ pathology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!