A variety of experimental solid-state nuclear magnetic resonance (NMR) techniques has been used to characterize each of the elements in 2-aminoethane sulfonic acid (taurine). A combination of (15)N cross-polarization magic angle spinning (CPMAS), (14)N ultrawideline, and (14)N overtone experiments enabled a determination of the relative orientation of the nitrogen electric field gradient and chemical shift tensors. (17)O spectra recorded from an isotopically enriched taurine sample at multiple magnetic fields allowed the three nonequivalent oxygen sites to be distinguished, and NMR parameters calculated from a neutron diffraction structure using density functional theory allowed the assignment of the (17)O parameters to the correct crystallographic sites. This is the first time that a complete set of (17)O NMR tensors are reported for a sulfonate group. In combination with (1)H and (13)C MAS spectra, as well as a previously reported (33)S NMR study, this provides a very broad set of NMR data for this relatively simple organic molecule, making it a potentially useful structure on which to test DFT calculation methods (particularly for the quadrupolar nuclei (14)N, (17)O, and (33)S) or NMR crystallography approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp210844tDOI Listing

Publication Analysis

Top Keywords

solid-state nuclear
8
nuclear magnetic
8
magnetic resonance
8
density functional
8
functional theory
8
33s nmr
8
nmr
6
multinuclear solid-state
4
resonance density
4
theory characterization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!