Chemical compositions of the essential oils of the aerial parts of Chamaemelum mixtum (L.) Alloni.

J Agric Food Chem

Laboratoire Chimie des Produits Naturels, UMR CNRS 6134, Université de Corse, B.P. 52, 20250 Corti, France.

Published: February 2012

The chemical compositions of the aerial parts essential oils of Chamaemelum mixtum (L.) Alloni from Corsica and Sardinia were investigated employing gas chromatography and gas chromatography-mass spectrometry (GC-MS). The structure of (Z)-heptadeca-9,16-dien-7-one, a natural compound not previously described, was elucidated by GC-MS (electron impact and chemical ionization) and one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy. The variation in C. mixtum essential oil was studied, and statistical analysis showed the clustering of oil samples into three groups according to the amount of oxygenated compounds; these groups correlated to the harvest area. The strong biological activity of the oxygenated fraction (minimum inhibitory concentration of <0.1 mg/mL) of the Corsican oil against Candida albicans , Citrobacter frendii , Enterococcus faecalis , Escherichia coli , Klebsiella pneumoniae , Listeria monocytogenes , and Staphyllococcus aureus can be attributed to the presence of irregular monoterpene alcohols and (Z)-heptadeca-9,16-dien-7-one.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf203872zDOI Listing

Publication Analysis

Top Keywords

chemical compositions
8
essential oils
8
aerial parts
8
chamaemelum mixtum
8
mixtum alloni
8
compositions essential
4
oils aerial
4
parts chamaemelum
4
alloni chemical
4
compositions aerial
4

Similar Publications

Food waste offers a potential source for bioethanol production, but productivity depends on the chemical composition of the raw materials and the processes involved. However, assessment of the environmental sustainability of these processes is often absent and can be carried out using the Life Cycle Assessment (LCA) methodology. This study aimed to perform an LCA on bioethanol production from mixtures of different wastes, including tubers, fruits, and processed foods, focusing on the gate-to-gate phase.

View Article and Find Full Text PDF

The reactions of LAlH (L = HC(CMeNAr), Ar = 2,6-PrCH) (1) with diphenylphosphane oxide [PhP(O)H], diphenylphosphinamide [PhP(O)NH], and diaryl/alkyl phosphane [(RO)P(O)H (R = Ph, or Pr)] afford their corresponding compounds with compositions LAl(H)OP(Ph) (2), LAl[OP(Ph)] (3), LAl{[N(H)P(O)(Ph)][OP(Ph)]} (4), LAl(OPr) (5), and LAl(OPh) (6), respectively. These reactions probably undergo a process of dehydrogenation coupling, deaminating dehydrogenation coupling, or chain-breaking coupling. It is noteworthy to mention that the reaction of compound 1 with 2 equiv.

View Article and Find Full Text PDF

Despite the potential to significantly enhance the economic viability of biomass-based platforms through the selective conversion of glycerol to 1,3-dihydroxyacetone (DHA), a formidable challenge persists in simultaneously achieving high catalytic activity and stability along this reaction pathway. Herein, we have devised a strategic approach to manipulate the interfacial integration within composite catalysts to address the performance trade-off. Through the modulation of the composite process involving a bio-templated porous ZSM-5 zeolite platform (bZ) and an Au/CuZnO catalyst, three distinct interfacial bonding modes were achieved: physical milling, encapsulation by zeolite, and growth on zeolite.

View Article and Find Full Text PDF

Hydrogeochemical characterization of shallow and deep groundwater for drinking and irrigation water quality index of Kathmandu Valley, Nepal.

Environ Geochem Health

January 2025

Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.

A comprehensive hydrogeochemical analysis of 156 groundwater samples (106 shallow and 50 deep) was conducted in the Kathmandu Valley, Nepal. This study addresses a significant research gap by focusing on the hydro-geochemical composition and contamination of groundwater in the Kathmandu Valley, an area with limited detailed assessments. The novelty of this work lies in its comprehensive analysis of both shallow and deep groundwater, particularly concerning the high concentration of contaminants like arsenic, microbial pathogens, and ammonium, which are critical for public health.

View Article and Find Full Text PDF

Background: With the expiration of patents for multiple biotherapeutics, biosimilars are gaining traction globally as cost-effective alternatives to the original products. Glycosylation, a critical quality attribute, makes glycosimilarity assessment pivotal for biosimilar development. Given the complexity of glycoanalytical profiles, assessing glycosimilarity is nontrivial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!