Unstable periodic orbits and noise in chaos computing.

Chaos

School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709, USA.

Published: December 2011

Different methods to utilize the rich library of patterns and behaviors of a chaotic system have been proposed for doing computation or communication. Since a chaotic system is intrinsically unstable and its nearby orbits diverge exponentially from each other, special attention needs to be paid to the robustness against noise of chaos-based approaches to computation. In this paper unstable periodic orbits, which form the skeleton of any chaotic system, are employed to build a model for the chaotic system to measure the sensitivity of each orbit to noise, and to select the orbits whose symbolic representations are relatively robust against the existence of noise. Furthermore, since unstable periodic orbits are extractable from time series, periodic orbit-based models can be extracted from time series too. Chaos computing can be and has been implemented on different platforms, including biological systems. In biology noise is always present; as a result having a clear model for the effects of noise on any given biological implementation has profound importance. Also, since in biology it is hard to obtain exact dynamical equations of the system under study, the time series techniques we introduce here are of critical importance.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3664349DOI Listing

Publication Analysis

Top Keywords

chaotic system
16
unstable periodic
12
periodic orbits
12
time series
12
chaos computing
8
noise
6
orbits
5
system
5
unstable
4
orbits noise
4

Similar Publications

Empirical Data-Driven Linear Model of a Swimming Robot Using the Complex Delay-Embedding DMD Technique.

Biomimetics (Basel)

January 2025

Group of Biomechatronics, Fachgebiet Biomechatronik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany.

Anguilliform locomotion, an efficient aquatic locomotion mode where the whole body is engaged in fluid-body interaction, contains sophisticated physics. We hypothesized that data-driven modeling techniques may extract models or patterns of the swimmers' dynamics without implicitly measuring the hydrodynamic variables. This work proposes empirical kinematic control and data-driven modeling of a soft swimming robot.

View Article and Find Full Text PDF

Image Encryption Method Based on Three-Dimensional Chaotic Systems and V-Shaped Scrambling.

Entropy (Basel)

January 2025

School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China.

With the increasing importance of securing images during network transmission, this paper introduces a novel image encryption algorithm that integrates a 3D chaotic system with V-shaped scrambling techniques. The proposed method begins by constructing a unique 3D chaotic system to generate chaotic sequences for encryption. These sequences determine a random starting point for V-shaped scrambling, which facilitates the transformation of image pixels into quaternary numbers.

View Article and Find Full Text PDF

The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently.

View Article and Find Full Text PDF

Recent advancements in artificial intelligence (AI) have increased interest in intelligent transportation systems, particularly autonomous vehicles. Safe navigation in traffic-heavy environments requires accurate road scene segmentation, yet traditional computer vision methods struggle with complex scenarios. This study emphasizes the role of deep learning in improving semantic segmentation using datasets like the Indian Driving Dataset (IDD), which presents unique challenges in chaotic road conditions.

View Article and Find Full Text PDF

The Walrus Optimization (WO) algorithm, as an emerging metaheuristic algorithm, has shown excellent performance in problem-solving, however it still faces issues such as slow convergence and susceptibility to getting trapped in local optima. To this end, the study proposes a novel WO enhanced by quasi-oppositional-based learning and chaotic local search mechanisms, called QOCWO. The study aims to prevent premature convergence to local optima and enhance the diversity of the population by integrating the quasi-oppositional-based learning mechanism into the original Walrus Optimization (WO) algorithm, thereby improving the global search capability and expanding the search range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!