We report on the development and characterization of a zirconium Kα imager for high energy density physics research. The imager consists of a spherically bent quartz crystal operating at 15.7 keV photon energy. We compare the performance of the imager in terms of integrated reflectivity (R(int)) and temperature dependent collection efficiency (η(Te)) to that of the widely used Cu Kα imager. Our collisional-radiative simulations show that the new imager can be reliably used up to 250 eV plasma temperature. Monte Carlo simulations show that for a 25 μm thick tracer layer of zirconium, the contribution to Kα production from photo-pumping is only 2%. We present, for the first time, 2D spatially resolved images of zirconium plasmas generated by a high intensity short pulse laser interacting with Zr solid targets.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3665931DOI Listing

Publication Analysis

Top Keywords

kα imager
12
zirconium kα
8
imager high
8
high energy
8
energy density
8
density physics
8
imager
6
novel zirconium
4
4
physics report
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!