A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The tensile strengths of heterogeneous interfaces: a comparison of static and dynamic first-principles calculations. | LitMetric

First-principles molecular dynamics (FPMD) simulations and static quantum chemical (QC) calculations are used to evaluate the tensile strengths, σ(c), of interfaces consisting of (0001) surfaces of α-Al(2)O(3) separated by small organic species. The evaluation of σ(c) with FPMD was achieved by performing simulations in which the simulation cell was extending in a direction normal to the fracture plane until rupture of the interface occurred. The static QC calculations employed an approach which treated fracture of the interface as a competition between uniform extension of the simulation cell and crack formation at the rupture site, which is analogous to that used in the construction of universal binding energy relationships. The results showed that the static QC calculations accurately reproduced the FPMD simulations with respect to tensile strength and the cell extension at which rupture occurred, provided that the rupture site employed in the static calculations matched the site at which rupture occurred during the FPMD simulations. A simple strategy for identifying the rupture site, even in complex systems containing many potential rupture sites, is proposed. Overall, the work extends the calculation of tensile strengths with static QC methods to highly heterogeneous interfaces, thus providing a computationally efficient alternative to demanding FPMD simulations for this purpose.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3671452DOI Listing

Publication Analysis

Top Keywords

fpmd simulations
16
tensile strengths
12
static calculations
12
rupture site
12
heterogeneous interfaces
8
simulation cell
8
rupture occurred
8
rupture
7
static
6
calculations
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!