Benchmark, full-dimensional calculations on the ground and excited vibrational states for the tetra-, and penta-atomic weakly bound He(2,3)ICl complexes are reported. The representation of the potential energy surfaces includes three-body HeICl potentials parameterized to coupled-cluster singles, doubles, and perturbative triples ab initio data. These terms are important in accurately describing the interactions of such highly floppy systems. The corresponding 6D/9D computations are performed with the multi-configuration time dependent Hartree method, using natural potential fits, and a mode combination scheme to optimize the computational effort in the improved relaxation calculations. For these complexes several low-lying vibrational states are computed, and their binding energies and radial/angular probability density distributions are obtained. We found various isomers which are assigned to different structural models related with combinations of the triatomic isomers, like linear, T-shaped, and antilinear ones. Comparison of these results with recent experimental data is presented, and the quantitative deviations found with respect to the experiment are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3671611DOI Listing

Publication Analysis

Top Keywords

vibrational states
12
multi-configuration time
8
time dependent
8
dependent hartree
8
theoretical characterization
4
characterization intermolecular
4
intermolecular vibrational
4
states multi-configuration
4
hartree approach
4
approach he23icl
4

Similar Publications

Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear-electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing.

View Article and Find Full Text PDF

Capillary vibrating sharp-edge spray ionization (cVSSI) has been used to control the droplet charging of nebulized microdroplets and monitor effects on protein ion conformation makeup as determined by mass spectrometry (MS). Here it is observed that the application of voltage results in noticeable differences to the charge state distributions (CSDs) of ubiquitin ions. The data can be described most generally in three distinct voltage regions: Under low-voltage conditions (<+200 V, LV regime), low charge states (2+ to 4+ ions) dominate the mass spectra.

View Article and Find Full Text PDF

Micromirror technology is one of the current research hotspots. In this work, what we believe to be a novel electrostatic 2-DOF micromirror structure with double-biased torsional axes is proposed. By introducing internal resonance, synchronous motions of the two axes with a locked frequency ratio under a single driving force were achieved within a wide frequency range.

View Article and Find Full Text PDF

Whole slide image based deep learning refines prognosis and therapeutic response evaluation in lung adenocarcinoma.

NPJ Digit Med

January 2025

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.

Existing prognostic models are useful for estimating the prognosis of lung adenocarcinoma patients, but there remains room for improvement. In the current study, we developed a deep learning model based on histopathological images to predict the recurrence risk of lung adenocarcinoma patients. The efficiency of the model was then evaluated in independent multicenter cohorts.

View Article and Find Full Text PDF

Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!